Huang, Biao
Beyond Visibility Limits: A DRL-Based Navigation Strategy for Unexpected Obstacles
Tan, Mingao, Wang, Shanze, Huang, Biao, Yang, Zhibo, Chen, Rongfei, Shen, Xiaoyu, Zhang, Wei
-- Distance-based reward mechanisms in deep reinforcement learning (DRL) navigation systems suffer from critical safety limitations in dynamic environments, frequently resulting in collisions when visibility is restricted. We propose DRL-NSUO, a novel navigation strategy for unexpected obstacles that leverages the rate of change in LiDAR data as a dynamic environmental perception element. Our approach incorporates a composite reward function with environmental change rate constraints and dynamically adjusted weights through curriculum learning, enabling robots to autonomously balance between path efficiency and safety maximization. We enhance sensitivity to nearby obstacles by implementing short-range feature preprocessing of LiDAR data. Experimental results demonstrate that this method significantly improves both robot and pedestrian safety in complex scenarios compared to traditional DRL-based methods. When evaluated on the BARN navigation dataset, our method achieved superior performance with success rates of 94.0% at 0.5 m/s and 91.0% at 1.0 m/s, outperforming conservative obstacle expansion strategies. Deep Reinforcement Learning (DRL) has emerged as a promising approach for navigation in dynamic environments [1].
Facilitating Reinforcement Learning for Process Control Using Transfer Learning: Perspectives
Lin, Runze, Chen, Junghui, Xie, Lei, Su, Hongye, Huang, Biao
This paper provides insights into deep reinforcement learning (DRL) for process control from the perspective of transfer learning. We analyze the challenges of applying DRL in the field of process industries and the necessity of introducing transfer learning. Furthermore, recommendations and prospects are provided for future research directions on how transfer learning can be integrated with DRL to empower process control.
Machine learning for industrial sensing and control: A survey and practical perspective
Lawrence, Nathan P., Damarla, Seshu Kumar, Kim, Jong Woo, Tulsyan, Aditya, Amjad, Faraz, Wang, Kai, Chachuat, Benoit, Lee, Jong Min, Huang, Biao, Gopaluni, R. Bhushan
With the rise of deep learning, there has been renewed interest within the process industries to utilize data on large-scale nonlinear sensing and control problems. We identify key statistical and machine learning techniques that have seen practical success in the process industries. To do so, we start with hybrid modeling to provide a methodological framework underlying core application areas: soft sensing, process optimization, and control. Soft sensing contains a wealth of industrial applications of statistical and machine learning methods. We quantitatively identify research trends, allowing insight into the most successful techniques in practice. We consider two distinct flavors for data-driven optimization and control: hybrid modeling in conjunction with mathematical programming techniques and reinforcement learning. Throughout these application areas, we discuss their respective industrial requirements and challenges. A common challenge is the interpretability and efficiency of purely data-driven methods. This suggests a need to carefully balance deep learning techniques with domain knowledge. As a result, we highlight ways prior knowledge may be integrated into industrial machine learning applications. The treatment of methods, problems, and applications presented here is poised to inform and inspire practitioners and researchers to develop impactful data-driven sensing, optimization, and control solutions in the process industries.
Surrogate Empowered Sim2Real Transfer of Deep Reinforcement Learning for ORC Superheat Control
Lin, Runze, Luo, Yangyang, Wu, Xialai, Chen, Junghui, Huang, Biao, Xie, Lei, Su, Hongye
The Organic Rankine Cycle (ORC) is widely used in industrial waste heat recovery due to its simple structure and easy maintenance. However, in the context of smart manufacturing in the process industry, traditional model-based optimization control methods are unable to adapt to the varying operating conditions of the ORC system or sudden changes in operating modes. Deep reinforcement learning (DRL) has significant advantages in situations with uncertainty as it directly achieves control objectives by interacting with the environment without requiring an explicit model of the controlled plant. Nevertheless, direct application of DRL to physical ORC systems presents unacceptable safety risks, and its generalization performance under model-plant mismatch is insufficient to support ORC control requirements. Therefore, this paper proposes a Sim2Real transfer learning-based DRL control method for ORC superheat control, which aims to provide a new simple, feasible, and user-friendly solution for energy system optimization control. Experimental results show that the proposed method greatly improves the training speed of DRL in ORC control problems and solves the generalization performance issue of the agent under multiple operating conditions through Sim2Real transfer.
Estimation of minimum miscibility pressure (MMP) in impure/pure N2 based enhanced oil recovery process: A comparative study of statistical and machine learning algorithms
Zhu, Xiuli, Damarla, Seshu Kumar, Huang, Biao
Minimum miscibility pressure (MMP) prediction plays an important role in design and operation of nitrogen based enhanced oil recovery processes. In this work, a comparative study of statistical and machine learning methods used for MMP estimation is carried out. Most of the predictive models developed in this study exhibited superior performance over correlation and predictive models reported in literature.
Distributed dynamic modeling and monitoring for large-scale industrial processes under closed-loop control
Li, Wenqing, Zhao, Chunhui, Huang, Biao
For large-scale industrial processes under closed-loop control, process dynamics directly resulting from control action are typical characteristics and may show different behaviors between real faults and normal changes of operating conditions. However, conventional distributed monitoring approaches do not consider the closed-loop control mechanism and only explore static characteristics, which thus are incapable of distinguishing between real process faults and nominal changes of operating conditions, leading to unnecessary alarms. In this regard, this paper proposes a distributed monitoring method for closed-loop industrial processes by concurrently exploring static and dynamic characteristics. First, the large-scale closed-loop process is decomposed into several subsystems by developing a sparse slow feature analysis (SSFA) algorithm which capture changes of both static and dynamic information. Second, distributed models are developed to separately capture static and dynamic characteristics from the local and global aspects. Based on the distributed monitoring system, a two-level monitoring strategy is proposed to check different influences on process characteristics resulting from changes of the operating conditions and control action, and thus the two changes can be well distinguished from each other. Case studies are conducted based on both benchmark data and real industrial process data to illustrate the effectiveness of the proposed method.
On-line Bayesian parameter estimation in general non-linear state-space models: A tutorial and new results
Tulsyan, Aditya, Huang, Biao, Gopaluni, R. Bhushan, Forbes, J. Fraser
On-line estimation plays an important role in process control and monitoring. Obtaining a theoretical solution to the simultaneous state-parameter estimation problem for non-linear stochastic systems involves solving complex multi-dimensional integrals that are not amenable to analytical solution. While basic sequential Monte-Carlo (SMC) or particle filtering (PF) algorithms for simultaneous estimation exist, it is well recognized that there is a need for making these on-line algorithms non-degenerate, fast and applicable to processes with missing measurements. To overcome the deficiencies in traditional algorithms, this work proposes a Bayesian approach to on-line state and parameter estimation. Its extension to handle missing data in real-time is also provided. The simultaneous estimation is performed by filtering an extended vector of states and parameters using an adaptive sequential-importance-resampling (SIR) filter with a kernel density estimation method. The approach uses an on-line optimization algorithm based on Kullback-Leibler (KL) divergence to allow adaptation of the SIR filter for combined state-parameter estimation. An optimal tuning rule to control the width of the kernel and the variance of the artificial noise added to the parameters is also proposed. The approach is illustrated through numerical examples.