Goto

Collaborating Authors

 Hu, Xiaobo Sharon


TSB: Tiny Shared Block for Efficient DNN Deployment on NVCIM Accelerators

arXiv.org Artificial Intelligence

Compute-in-memory (CIM) accelerators using non-volatile memory (NVM) devices offer promising solutions for energy-efficient and low-latency Deep Neural Network (DNN) inference execution. However, practical deployment is often hindered by the challenge of dealing with the massive amount of model weight parameters impacted by the inherent device variations within non-volatile computing-in-memory (NVCIM) accelerators. This issue significantly offsets their advantages by increasing training overhead, the time needed for mapping weights to device states, energy consumption, and diminishing inference accuracy. To mitigate these challenges, we propose the "Tiny Shared Block (TSB)" method, which integrates a small shared 1x1 convolution block into the DNN architecture. This block is designed to stabilize feature processing across the network, effectively reducing the impact of device variation. Extensive experimental results show that TSB achieves over 20x inference accuracy gap improvement, over 5x training speedup, and weights-to-device mapping cost reduction while requiring less than 0.4% of the original weights to be write-verified during programming, when compared with state-of-the-art baseline solutions. Our approach provides a practical and efficient solution for deploying robust DNN models on NVCIM accelerators, making it a valuable contribution to the field of energy-efficient AI hardware.


Negative Feedback Training: A Novel Concept to Improve Robustness of NVCIM DNN Accelerators

arXiv.org Artificial Intelligence

Compute-in-memory (CIM) accelerators built upon non-volatile memory (NVM) devices excel in energy efficiency and latency when performing Deep Neural Network (DNN) inference, thanks to their in-situ data processing capability. However, the stochastic nature and intrinsic variations of NVM devices often result in performance degradation in DNN inference. Introducing these non-ideal device behaviors during DNN training enhances robustness, but drawbacks include limited accuracy improvement, reduced prediction confidence, and convergence issues. This arises from a mismatch between the deterministic training and non-deterministic device variations, as such training, though considering variations, relies solely on the model's final output. In this work, we draw inspiration from the control theory and propose a novel training concept: Negative Feedback Training (NFT) leveraging the multi-scale noisy information captured from network. We develop two specific NFT instances, Oriented Variational Forward (OVF) and Intermediate Representation Snapshot (IRS). Extensive experiments show that our methods outperform existing state-of-the-art methods with up to a 46.71% improvement in inference accuracy while reducing epistemic uncertainty, boosting output confidence, and improving convergence probability. Their effectiveness highlights the generality and practicality of our NFT concept in enhancing DNN robustness against device variations.


Compute-in-Memory based Neural Network Accelerators for Safety-Critical Systems: Worst-Case Scenarios and Protections

arXiv.org Artificial Intelligence

Emerging non-volatile memory (NVM)-based Computing-in-Memory (CiM) architectures show substantial promise in accelerating deep neural networks (DNNs) due to their exceptional energy efficiency. However, NVM devices are prone to device variations. Consequently, the actual DNN weights mapped to NVM devices can differ considerably from their targeted values, inducing significant performance degradation. Many existing solutions aim to optimize average performance amidst device variations, which is a suitable strategy for general-purpose conditions. However, the worst-case performance that is crucial for safety-critical applications is largely overlooked in current research. In this study, we define the problem of pinpointing the worst-case performance of CiM DNN accelerators affected by device variations. Additionally, we introduce a strategy to identify a specific pattern of the device value deviations in the complex, high-dimensional value deviation space, responsible for this worst-case outcome. Our findings reveal that even subtle device variations can precipitate a dramatic decline in DNN accuracy, posing risks for CiM-based platforms in supporting safety-critical applications. Notably, we observe that prevailing techniques to bolster average DNN performance in CiM accelerators fall short in enhancing worst-case scenarios. In light of this issue, we propose a novel worst-case-aware training technique named A-TRICE that efficiently combines adversarial training and noise-injection training with right-censored Gaussian noise to improve the DNN accuracy in the worst-case scenarios. Our experimental results demonstrate that A-TRICE improves the worst-case accuracy under device variations by up to 33%.


U-SWIM: Universal Selective Write-Verify for Computing-in-Memory Neural Accelerators

arXiv.org Artificial Intelligence

Architectures that incorporate Computing-in-Memory (CiM) using emerging non-volatile memory (NVM) devices have become strong contenders for deep neural network (DNN) acceleration due to their impressive energy efficiency. Yet, a significant challenge arises when using these emerging devices: they can show substantial variations during the weight-mapping process. This can severely impact DNN accuracy if not mitigated. A widely accepted remedy for imperfect weight mapping is the iterative write-verify approach, which involves verifying conductance values and adjusting devices if needed. In all existing publications, this procedure is applied to every individual device, resulting in a significant programming time overhead. In our research, we illustrate that only a small fraction of weights need this write-verify treatment for the corresponding devices and the DNN accuracy can be preserved, yielding a notable programming acceleration. Building on this, we introduce USWIM, a novel method based on the second derivative. It leverages a single iteration of forward and backpropagation to pinpoint the weights demanding write-verify. Through extensive tests on diverse DNN designs and datasets, USWIM manifests up to a 10x programming acceleration against the traditional exhaustive write-verify method, all while maintaining a similar accuracy level. Furthermore, compared to our earlier SWIM technique, USWIM excels, showing a 7x speedup when dealing with devices exhibiting non-uniform variations.


Improving Realistic Worst-Case Performance of NVCiM DNN Accelerators through Training with Right-Censored Gaussian Noise

arXiv.org Artificial Intelligence

Compute-in-Memory (CiM), built upon non-volatile memory (NVM) devices, is promising for accelerating deep neural networks (DNNs) owing to its in-situ data processing capability and superior energy efficiency. Unfortunately, the well-trained model parameters, after being mapped to NVM devices, can often exhibit large deviations from their intended values due to device variations, resulting in notable performance degradation in these CiM-based DNN accelerators. There exists a long list of solutions to address this issue. However, they mainly focus on improving the mean performance of CiM DNN accelerators. How to guarantee the worst-case performance under the impact of device variations, which is crucial for many safety-critical applications such as self-driving cars, has been far less explored. In this work, we propose to use the k-th percentile performance (KPP) to capture the realistic worst-case performance of DNN models executing on CiM accelerators. Through a formal analysis of the properties of KPP and the noise injection-based DNN training, we demonstrate that injecting a novel right-censored Gaussian noise, as opposed to the conventional Gaussian noise, significantly improves the KPP of DNNs. We further propose an automated method to determine the optimal hyperparameters for injecting this right-censored Gaussian noise during the training process. Our method achieves up to a 26% improvement in KPP compared to the state-of-the-art methods employed to enhance DNN robustness under the impact of device variations.


On the Viability of using LLMs for SW/HW Co-Design: An Example in Designing CiM DNN Accelerators

arXiv.org Artificial Intelligence

Deep Neural Networks (DNNs) have demonstrated impressive performance across a wide range of tasks. However, deploying DNNs on edge devices poses significant challenges due to stringent power and computational budgets. An effective solution to this issue is software-hardware (SW-HW) co-design, which allows for the tailored creation of DNN models and hardware architectures that optimally utilize available resources. However, SW-HW co-design traditionally suffers from slow optimization speeds because their optimizers do not make use of heuristic knowledge, also known as the ``cold start'' problem. In this study, we present a novel approach that leverages Large Language Models (LLMs) to address this issue. By utilizing the abundant knowledge of pre-trained LLMs in the co-design optimization process, we effectively bypass the cold start problem, substantially accelerating the design process. The proposed method achieves a significant speedup of 25x. This advancement paves the way for the rapid and efficient deployment of DNNs on edge devices.