Hu, Shell Xu
FW-Merging: Scaling Model Merging with Frank-Wolfe Optimization
Chen, Hao Mark, Hu, Shell Xu, Luk, Wayne, Hospedales, Timothy, Fan, Hongxiang
Model merging has emerged as a promising approach for multi-task learning (MTL), offering a data-efficient alternative to conventional fine-tuning. However, with the rapid development of the open-source AI ecosystem and the increasing availability of fine-tuned foundation models, existing model merging methods face two key limitations: (i) They are primarily designed for in-house fine-tuned models, making them less adaptable to diverse model sources with partially unknown model and task information, (ii) They struggle to scale effectively when merging numerous model checkpoints. To address these challenges, we formulate model merging as a constrained optimization problem and introduce a novel approach: Frank-Wolfe Merging (FW-Merging). Inspired by Frank-Wolfe optimization, our approach iteratively selects the most relevant model in the pool to minimize a linear approximation of the objective function and then executes a local merging similar to the Frank-Wolfe update. The objective function is designed to capture the desired behavior of the target-merged model, while the fine-tuned candidate models define the constraint set. More importantly, FW-Merging serves as an orthogonal technique for existing merging methods, seamlessly integrating with them to further enhance accuracy performance. Our experiments show that FW-Merging scales across diverse model sources, remaining stable with 16 irrelevant models and improving by 15.3% with 16 relevant models on 20 CV tasks, while maintaining constant memory overhead, unlike the linear overhead of data-informed merging methods. Compared with the state-of-the-art approaches, FW-Merging surpasses the data-free merging method by 32.8% and outperforms the data-informed Adamerging by 8.39% when merging 20 ViT models.
BioKGBench: A Knowledge Graph Checking Benchmark of AI Agent for Biomedical Science
Lin, Xinna, Ma, Siqi, Shan, Junjie, Zhang, Xiaojing, Hu, Shell Xu, Guo, Tiannan, Li, Stan Z., Yu, Kaicheng
Pursuing artificial intelligence for biomedical science, a.k.a. AI Scientist, draws increasing attention, where one common approach is to build a copilot agent driven by Large Language Models (LLMs). However, to evaluate such systems, people either rely on direct Question-Answering (QA) to the LLM itself, or in a biomedical experimental manner. How to precisely benchmark biomedical agents from an AI Scientist perspective remains largely unexplored. To this end, we draw inspiration from one most important abilities of scientists, understanding the literature, and introduce BioKGBench. In contrast to traditional evaluation benchmark that only focuses on factual QA, where the LLMs are known to have hallucination issues, we first disentangle "Understanding Literature" into two atomic abilities, i) "Understanding" the unstructured text from research papers by performing scientific claim verification, and ii) Ability to interact with structured Knowledge-Graph Question-Answering (KGQA) as a form of "Literature" grounding. We then formulate a novel agent task, dubbed KGCheck, using KGQA and domain-based Retrieval-Augmented Generation (RAG) to identify the factual errors of existing large-scale knowledge graph databases. We collect over two thousand data for two atomic tasks and 225 high-quality annotated data for the agent task. Surprisingly, we discover that state-of-the-art agents, both daily scenarios and biomedical ones, have either failed or inferior performance on our benchmark. We then introduce a simple yet effective baseline, dubbed BKGAgent. On the widely used popular knowledge graph, we discover over 90 factual errors which provide scenarios for agents to make discoveries and demonstrate the effectiveness of our approach. The code and data are available at https://github.com/westlake-autolab/BioKGBench.
Recurrent Early Exits for Federated Learning with Heterogeneous Clients
Lee, Royson, Fernandez-Marques, Javier, Hu, Shell Xu, Li, Da, Laskaridis, Stefanos, Dudziak, ลukasz, Hospedales, Timothy, Huszรกr, Ferenc, Lane, Nicholas D.
Federated learning (FL) has enabled distributed learning of a model across multiple clients in a privacy-preserving manner. One of the main challenges of FL is to accommodate clients with varying hardware capacities; clients have differing compute and memory requirements. To tackle this challenge, recent state-of-the-art approaches leverage the use of early exits. Nonetheless, these approaches fall short of mitigating the challenges of joint learning multiple exit classifiers, often relying on hand-picked heuristic solutions for knowledge distillation among classifiers and/or utilizing additional layers for weaker classifiers. In this work, instead of utilizing multiple classifiers, we propose a recurrent early exit approach named ReeFL that fuses features from different sub-models into a single shared classifier. Specifically, we use a transformer-based early-exit module shared among sub-models to i) better exploit multi-layer feature representations for task-specific prediction and ii) modulate the feature representation of the backbone model for subsequent predictions. We additionally present a per-client self-distillation approach where the best sub-model is automatically selected as the teacher of the other sub-models at each client. Our experiments on standard image and speech classification benchmarks across various emerging federated fine-tuning baselines demonstrate ReeFL's effectiveness over previous works.
TokenCut: Segmenting Objects in Images and Videos with Self-supervised Transformer and Normalized Cut
Wang, Yangtao, Shen, Xi, Yuan, Yuan, Du, Yuming, Li, Maomao, Hu, Shell Xu, Crowley, James L, Vaufreydaz, Dominique
In this paper, we describe a graph-based algorithm that uses the features obtained by a self-supervised transformer to detect and segment salient objects in images and videos. With this approach, the image patches that compose an image or video are organised into a fully connected graph, where the edge between each pair of patches is labeled with a similarity score between patches using features learned by the transformer. Detection and segmentation of salient objects is then formulated as a graph-cut problem and solved using the classical Normalized Cut algorithm. Despite the simplicity of this approach, it achieves state-of-the-art results on several common image and video detection and segmentation tasks. For unsupervised object discovery, this approach outperforms the competing approaches by a margin of 6.1%, 5.7%, and 2.6%, respectively, when tested with the VOC07, VOC12, and COCO20K datasets. For the unsupervised saliency detection task in images, this method improves the score for Intersection over Union (IoU) by 4.4%, 5.6% and 5.2%. When tested with the ECSSD, DUTS, and DUT-OMRON datasets, respectively, compared to current state-of-the-art techniques. This method also achieves competitive results for unsupervised video object segmentation tasks with the DAVIS, SegTV2, and FBMS datasets.
Federated Learning for Inference at Anytime and Anywhere
Liu, Zicheng, Li, Da, Fernandez-Marques, Javier, Laskaridis, Stefanos, Gao, Yan, Dudziak, ลukasz, Li, Stan Z., Hu, Shell Xu, Hospedales, Timothy
Federated learning has been predominantly concerned with collaborative training of deep networks from scratch, and especially the many challenges that arise, such as communication cost, robustness to heterogeneous data, and support for diverse device capabilities. However, there is no unified framework that addresses all these problems together. This paper studies the challenges and opportunities of exploiting pre-trained Transformer models in FL. In particular, we propose to efficiently adapt such pre-trained models by injecting a novel attention-based adapter module at each transformer block that both modulates the forward pass and makes an early prediction. Training only the lightweight adapter by FL leads to fast and communication-efficient learning even in the presence of heterogeneous data and devices. Extensive experiments on standard FL benchmarks, including CIFAR-100, FEMNIST and SpeechCommandsv2 demonstrate that this simple framework provides fast and accurate FL while supporting heterogenous device capabilities, efficient personalization, and scalable-cost anytime inference.
Feed-Forward Source-Free Latent Domain Adaptation via Cross-Attention
Bohdal, Ondrej, Li, Da, Hu, Shell Xu, Hospedales, Timothy
We study the highly practical but comparatively under-studied problem of latent-domain adaptation, where a source model should be adapted to a target dataset that contains a mixture of unlabelled domain-relevant and domain-irrelevant examples. Furthermore, motivated by the requirements for data privacy and the need for embedded and resource-constrained devices of all kinds to adapt to local data distributions, we focus on the setting of feed-forward source-free domain adaptation, where adaptation should not require access to the source dataset, and also be back propagation-free. Our solution is to meta-learn a network capable of embedding the mixed-relevance target dataset and dynamically adapting inference for target examples using cross-attention. The resulting framework leads to consistent improvement on strong ERM baselines. We also show that our framework sometimes even improves on the upper bound of domain-supervised adaptation, where only domain-relevant instances are provided for adaptation. This suggests that human annotated domain labels may not always be optimal, and raises the possibility of doing better through automated instance selection.
Compressing Features for Learning with Noisy Labels
Chen, Yingyi, Hu, Shell Xu, Shen, Xi, Ai, Chunrong, Suykens, Johan A. K.
Supervised learning can be viewed as distilling relevant information from input data into feature representations. This process becomes difficult when supervision is noisy as the distilled information might not be relevant. In fact, recent research shows that networks can easily overfit all labels including those that are corrupted, and hence can hardly generalize to clean datasets. In this paper, we focus on the problem of learning with noisy labels and introduce compression inductive bias to network architectures to alleviate this over-fitting problem. More precisely, we revisit one classical regularization named Dropout and its variant Nested Dropout. Dropout can serve as a compression constraint for its feature dropping mechanism, while Nested Dropout further learns ordered feature representations w.r.t. feature importance. Moreover, the trained models with compression regularization are further combined with Co-teaching for performance boost. Theoretically, we conduct bias-variance decomposition of the objective function under compression regularization. We analyze it for both single model and Co-teaching. This decomposition provides three insights: (i) it shows that over-fitting is indeed an issue for learning with noisy labels; (ii) through an information bottleneck formulation, it explains why the proposed feature compression helps in combating label noise; (iii) it gives explanations on the performance boost brought by incorporating compression regularization into Co-teaching. Experiments show that our simple approach can have comparable or even better performance than the state-of-the-art methods on benchmarks with real-world label noise including Clothing1M and ANIMAL-10N. Our implementation is available at https://yingyichen-cyy.github.io/CompressFeatNoisyLabels/.
Variational Information Distillation for Knowledge Transfer
Ahn, Sungsoo, Hu, Shell Xu, Damianou, Andreas, Lawrence, Neil D., Dai, Zhenwen
Transferring knowledge from a teacher neural network pretrained on the same or a similar task to a student neural network can significantly improve the performance of the student neural network. Existing knowledge transfer approaches match the activations or the corresponding hand-crafted features of the teacher and the student networks. We propose an information-theoretic framework for knowledge transfer which formulates knowledge transfer as maximizing the mutual information between the teacher and the student networks. We compare our method with existing knowledge transfer methods on both knowledge distillation and transfer learning tasks and show that our method consistently outperforms existing methods. We further demonstrate the strength of our method on knowledge transfer across heterogeneous network architectures by transferring knowledge from a convolutional neural network (CNN) to a multi-layer perceptron (MLP) on CIFAR-10. The resulting MLP significantly outperforms the-state-of-the-art methods and it achieves similar performance to the CNN with a single convolutional layer.