Goto

Collaborating Authors

 Hu, Shaohan


Hybrid Memory Replay: Blending Real and Distilled Data for Class Incremental Learning

arXiv.org Artificial Intelligence

Incremental learning (IL) aims to acquire new knowledge from current tasks while retaining knowledge learned from previous tasks. Replay-based IL methods store a set of exemplars from previous tasks in a buffer and replay them when learning new tasks. However, there is usually a size-limited buffer that cannot store adequate real exemplars to retain the knowledge of previous tasks. In contrast, data distillation (DD) can reduce the exemplar buffer's size, by condensing a large real dataset into a much smaller set of more information-compact synthetic exemplars. Nevertheless, DD's performance gain on IL quickly vanishes as the number of synthetic exemplars grows. To overcome the weaknesses of real-data and synthetic-data buffers, we instead optimize a hybrid memory including both types of data. Specifically, we propose an innovative modification to DD that distills synthetic data from a sliding window of checkpoints in history (rather than checkpoints on multiple training trajectories). Conditioned on the synthetic data, we then optimize the selection of real exemplars to provide complementary improvement to the DD objective. The optimized hybrid memory combines the strengths of synthetic and real exemplars, effectively mitigating catastrophic forgetting in Class IL (CIL) when the buffer size for exemplars is limited. Notably, our method can be seamlessly integrated into most existing replay-based CIL models. Extensive experiments across multiple benchmarks demonstrate that our method significantly outperforms existing replay-based baselines.


Model-Agnostic Utility-Preserving Biometric Information Anonymization

arXiv.org Artificial Intelligence

The recent rapid advancements in both sensing and machine learning technologies have given rise to the universal collection and utilization of people's biometrics, such as fingerprints, voices, retina/facial scans, or gait/motion/gestures data, enabling a wide range of applications including authentication, health monitoring, or much more sophisticated analytics. While providing better user experiences and deeper business insights, the use of biometrics has raised serious privacy concerns due to their intrinsic sensitive nature and the accompanying high risk of leaking sensitive information such as identity or medical conditions. In this paper, we propose a novel modality-agnostic data transformation framework that is capable of anonymizing biometric data by suppressing its sensitive attributes and retaining features relevant to downstream machine learning-based analyses that are of research and business values. We carried out a thorough experimental evaluation using publicly available facial, voice, and motion datasets. Results show that our proposed framework can achieve a \highlight{high suppression level for sensitive information}, while at the same time retain underlying data utility such that subsequent analyses on the anonymized biometric data could still be carried out to yield satisfactory accuracy.


MaSS: Multi-attribute Selective Suppression for Utility-preserving Data Transformation from an Information-theoretic Perspective

arXiv.org Artificial Intelligence

The growing richness of large-scale datasets has been crucial in driving the rapid advancement and wide adoption of machine learning technologies. The massive collection and usage of data, however, pose an increasing risk for people's private and sensitive information due to either inadvertent mishandling or malicious exploitation. Besides legislative solutions, many technical approaches have been proposed towards data privacy protection. However, they bear various limitations such as leading to degraded data availability and utility, or relying on heuristics and lacking solid theoretical bases. To overcome these limitations, we propose a formal information-theoretic definition for this utility-preserving privacy protection problem, and design a data-driven learnable data transformation framework that is capable of selectively suppressing sensitive attributes from target datasets while preserving the other useful attributes, regardless of whether or not they are known in advance or explicitly annotated for preservation. We provide rigorous theoretical analyses on the operational bounds for our framework, and carry out comprehensive experimental evaluations using datasets of a variety of modalities, including facial images, voice audio clips, and human activity motion sensor signals. Results demonstrate the effectiveness and generalizability of our method under various configurations on a multitude of tasks.


Dropout-Based Rashomon Set Exploration for Efficient Predictive Multiplicity Estimation

arXiv.org Artificial Intelligence

Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to $20\times \sim 5000\times$. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.


Quantum Deep Hedging

arXiv.org Artificial Intelligence

Quantum machine learning has the potential for a transformative impact across industry sectors and in particular in finance. In our work we look at the problem of hedging where deep reinforcement learning offers a powerful framework for real markets. We develop quantum reinforcement learning methods based on policy-search and distributional actor-critic algorithms that use quantum neural network architectures with orthogonal and compound layers for the policy and value functions. We prove that the quantum neural networks we use are trainable, and we perform extensive simulations that show that quantum models can reduce the number of trainable parameters while achieving comparable performance and that the distributional approach obtains better performance than other standard approaches, both classical and quantum. We successfully implement the proposed models on a trapped-ion quantum processor, utilizing circuits with up to $16$ qubits, and observe performance that agrees well with noiseless simulation. Our quantum techniques are general and can be applied to other reinforcement learning problems beyond hedging.


STFNets: Learning Sensing Signals from the Time-Frequency Perspective with Short-Time Fourier Neural Networks

arXiv.org Machine Learning

Recent advances in deep learning motivate the use of deep neural networks in Internet-of-Things (IoT) applications. These networks are modelled after signal processing in the human brain, thereby leading to significant advantages at perceptual tasks such as vision and speech recognition. IoT applications, however, often measure physical phenomena, where the underlying physics (such as inertia, wireless signal propagation, or the natural frequency of oscillation) are fundamentally a function of signal frequencies, offering better features in the frequency domain. This observation leads to a fundamental question: For IoT applications, can one develop a new brand of neural network structures that synthesize features inspired not only by the biology of human perception but also by the fundamental nature of physics? Hence, in this paper, instead of using conventional building blocks (e.g., convolutional and recurrent layers), we propose a new foundational neural network building block, the Short-Time Fourier Neural Network (STFNet). It integrates a widely-used time-frequency analysis method, the Short-Time Fourier Transform, into data processing to learn features directly in the frequency domain, where the physics of underlying phenomena leave better foot-prints. STFNets bring additional flexibility to time-frequency analysis by offering novel nonlinear learnable operations that are spectral-compatible. Moreover, STFNets show that transforming signals to a domain that is more connected to the underlying physics greatly simplifies the learning process. We demonstrate the effectiveness of STFNets with extensive experiments. STFNets significantly outperform the state-of-the-art deep learning models in all experiments. A STFNet, therefore, demonstrates superior capability as the fundamental building block of deep neural networks for IoT applications for various sensor inputs.


Multi-scale Neural Networks for Retinal Blood Vessels Segmentation

arXiv.org Machine Learning

Existing supervised approaches didn't make use of the low-level features which are actually effective to this task. And another deficiency is that they didn't consider the relation between pixels, which means effective features are not extracted. In this paper, we proposed a novel convolutional neural network which make sufficient use of low-level features together with high-level features and involves atrous convolution to get multi-scale features which should be considered as effective features. Our model is tested on three standard benchmarks - DRIVE, STARE, and CHASE databases. The results presents that our model significantly outperforms existing approaches in terms of accuracy, sensitivity, specificity, the area under the ROC curve and the highest prediction speed. Our work provides evidence of the power of wide and deep neural networks in retinal blood vessels segmentation task which could be applied on other medical images tasks.