Goto

Collaborating Authors

 Hu, Miao


BGTplanner: Maximizing Training Accuracy for Differentially Private Federated Recommenders via Strategic Privacy Budget Allocation

arXiv.org Artificial Intelligence

To mitigate the rising concern about privacy leakage, the federated recommender (FR) paradigm emerges, in which decentralized clients co-train the recommendation model without exposing their raw user-item rating data. The differentially private federated recommender (DPFR) further enhances FR by injecting differentially private (DP) noises into clients. Yet, current DPFRs, suffering from noise distortion, cannot achieve satisfactory accuracy. Various efforts have been dedicated to improving DPFRs by adaptively allocating the privacy budget over the learning process. However, due to the intricate relation between privacy budget allocation and model accuracy, existing works are still far from maximizing DPFR accuracy. To address this challenge, we develop BGTplanner (Budget Planner) to strategically allocate the privacy budget for each round of DPFR training, improving overall training performance. Specifically, we leverage the Gaussian process regression and historical information to predict the change in recommendation accuracy with a certain allocated privacy budget. Additionally, Contextual Multi-Armed Bandit (CMAB) is harnessed to make privacy budget allocation decisions by reconciling the current improvement and long-term privacy constraints. Our extensive experimental results on real datasets demonstrate that \emph{BGTplanner} achieves an average improvement of 6.76\% in training performance compared to state-of-the-art baselines.


Federated Continual Graph Learning

arXiv.org Artificial Intelligence

In the era of big data, managing evolving graph data poses substantial challenges due to storage costs and privacy issues. Training graph neural networks (GNNs) on such evolving data usually causes catastrophic forgetting, impairing performance on earlier tasks. Despite existing continual graph learning (CGL) methods mitigating this to some extent, they predominantly operate in centralized architectures and overlook the potential of distributed graph databases to harness collective intelligence for enhanced performance optimization. To address these challenges, we present a pioneering study on Federated Continual Graph Learning (FCGL), which adapts GNNs to multiple evolving graphs within decentralized settings while adhering to storage and privacy constraints. Our work begins with a comprehensive empirical analysis of FCGL, assessing its data characteristics, feasibility, and effectiveness, and reveals two principal challenges: local graph forgetting (LGF), where local GNNs forget prior knowledge when adapting to new tasks, and global expertise conflict (GEC), where the global GNN exhibits sub-optimal performance in both adapting to new tasks and retaining old ones, arising from inconsistent client expertise during server-side parameter aggregation. To tackle these, we propose the POWER framework, which mitigates LGF by preserving and replaying experience nodes with maximum local-global coverage at each client and addresses GEC by using a pseudo prototype reconstruction strategy and trajectory-aware knowledge transfer at the central server. Extensive evaluations across multiple graph datasets demonstrate POWER's superior performance over straightforward federated extensions of the centralized CGL algorithms and vision-focused federated continual learning algorithms. Our code is available at https://github.com/zyl24/FCGL_POWER.


FedTAD: Topology-aware Data-free Knowledge Distillation for Subgraph Federated Learning

arXiv.org Artificial Intelligence

Subgraph federated learning (subgraph-FL) is a new distributed paradigm that facilitates the collaborative training of graph neural networks (GNNs) by multi-client subgraphs. Unfortunately, a significant challenge of subgraph-FL arises from subgraph heterogeneity, which stems from node and topology variation, causing the impaired performance of the global GNN. Despite various studies, they have not yet thoroughly investigated the impact mechanism of subgraph heterogeneity. To this end, we decouple node and topology variation, revealing that they correspond to differences in label distribution and structure homophily. Remarkably, these variations lead to significant differences in the class-wise knowledge reliability of multiple local GNNs, misguiding the model aggregation with varying degrees. Building on this insight, we propose topology-aware data-free knowledge distillation technology (FedTAD), enhancing reliable knowledge transfer from the local model to the global model. Extensive experiments on six public datasets consistently demonstrate the superiority of FedTAD over state-of-the-art baselines.


FedDWA: Personalized Federated Learning with Dynamic Weight Adjustment

arXiv.org Artificial Intelligence

Different from conventional federated learning, personalized federated learning (PFL) is able to train a customized model for each individual client according to its unique requirement. The mainstream approach is to adopt a kind of weighted aggregation method to generate personalized models, in which weights are determined by the loss value or model parameters among different clients. However, such kinds of methods require clients to download others' models. It not only sheer increases communication traffic but also potentially infringes data privacy. In this paper, we propose a new PFL algorithm called \emph{FedDWA (Federated Learning with Dynamic Weight Adjustment)} to address the above problem, which leverages the parameter server (PS) to compute personalized aggregation weights based on collected models from clients. In this way, FedDWA can capture similarities between clients with much less communication overhead. More specifically, we formulate the PFL problem as an optimization problem by minimizing the distance between personalized models and guidance models, so as to customize aggregation weights for each client. Guidance models are obtained by the local one-step ahead adaptation on individual clients. Finally, we conduct extensive experiments using five real datasets and the results demonstrate that FedDWA can significantly reduce the communication traffic and achieve much higher model accuracy than the state-of-the-art approaches.


BARA: Efficient Incentive Mechanism with Online Reward Budget Allocation in Cross-Silo Federated Learning

arXiv.org Artificial Intelligence

Federated learning (FL) is a prospective distributed machine learning framework that can preserve data privacy. In particular, cross-silo FL can complete model training by making isolated data islands of different organizations collaborate with a parameter server (PS) via exchanging model parameters for multiple communication rounds. In cross-silo FL, an incentive mechanism is indispensable for motivating data owners to contribute their models to FL training. However, how to allocate the reward budget among different rounds is an essential but complicated problem largely overlooked by existing works. The challenge of this problem lies in the opaque feedback between reward budget allocation and model utility improvement of FL, making the optimal reward budget allocation complicated. To address this problem, we design an online reward budget allocation algorithm using Bayesian optimization named BARA (\underline{B}udget \underline{A}llocation for \underline{R}everse \underline{A}uction). Specifically, BARA can model the complicated relationship between reward budget allocation and final model accuracy in FL based on historical training records so that the reward budget allocated to each communication round is dynamically optimized so as to maximize the final model utility. We further incorporate the BARA algorithm into reverse auction-based incentive mechanisms to illustrate its effectiveness. Extensive experiments are conducted on real datasets to demonstrate that BARA significantly outperforms competitive baselines by improving model utility with the same amount of reward budget.