Hu, Ke
Training and Inference Efficiency of Encoder-Decoder Speech Models
Żelasko, Piotr, Dhawan, Kunal, Galvez, Daniel, Puvvada, Krishna C., Pasad, Ankita, Koluguri, Nithin Rao, Hu, Ke, Lavrukhin, Vitaly, Balam, Jagadeesh, Ginsburg, Boris
Attention encoder-decoder model architecture is the backbone of several recent top performing foundation speech models: Whisper, Seamless, OWSM, and Canary-1B. However, the reported data and compute requirements for their training are prohibitive for many in the research community. In this work, we focus on the efficiency angle and ask the questions of whether we are training these speech models efficiently, and what can we do to improve? We argue that a major, if not the most severe, detrimental factor for training efficiency is related to the sampling strategy of sequential data. We show that negligence in mini-batch sampling leads to more than 50% computation being spent on padding. To that end, we study, profile, and optimize Canary-1B training to show gradual improvement in GPU utilization leading up to 5x increase in average batch sizes versus its original training settings. This in turn allows us to train an equivalent model using 4x less GPUs in the same wall time, or leverage the original resources and train it in 2x shorter wall time. Finally, we observe that the major inference bottleneck lies in the autoregressive decoder steps. We find that adjusting the model architecture to transfer model parameters from the decoder to the encoder results in a 3x inference speedup as measured by inverse real-time factor (RTFx) while preserving the accuracy and compute requirements for convergence. The training code and models will be available as open-source.
DiOpt: Self-supervised Diffusion for Constrained Optimization
Ding, Shutong, Zhou, Yimiao, Hu, Ke, Yao, Xi, Yan, Junchi, Tang, Xiaoying, Shi, Ye
Recent advances in diffusion models show promising potential for learning-based optimization by leveraging their multimodal sampling capability to escape local optima. However, existing diffusion-based optimization approaches, often reliant on supervised training, lacks a mechanism to ensure strict constraint satisfaction which is often required in real-world applications. One resulting observation is the distributional misalignment, i.e. the generated solution distribution often exhibits small overlap with the feasible domain. In this paper, we propose DiOpt, a novel diffusion paradigm that systematically learns near-optimal feasible solution distributions through iterative self-training. Our framework introduces several key innovations: a target distribution specifically designed to maximize overlap with the constrained solution manifold; a bootstrapped self-training mechanism that adaptively weights candidate solutions based on the severity of constraint violations and optimality gaps; and a dynamic memory buffer that accelerates convergence by retaining high-quality solutions over training iterations. To our knowledge, DiOpt represents the first successful integration of self-supervised diffusion with hard constraint satisfaction. Evaluations on diverse tasks, including power grid control, motion retargeting, wireless allocation demonstrate its superiority in terms of both optimality and constraint satisfaction.
NeKo: Toward Post Recognition Generative Correction Large Language Models with Task-Oriented Experts
Lin, Yen-Ting, Yang, Chao-Han Huck, Chen, Zhehuai, Zelasko, Piotr, Yang, Xuesong, Chen, Zih-Ching, Puvvada, Krishna C, Fu, Szu-Wei, Hu, Ke, Chiu, Jun Wei, Balam, Jagadeesh, Ginsburg, Boris, Wang, Yu-Chiang Frank
Construction of a general-purpose post-recognition error corrector poses a crucial question: how can we most effectively train a model on a large mixture of domain datasets? The answer would lie in learning dataset-specific features and digesting their knowledge in a single model. Previous methods achieve this by having separate correction language models, resulting in a significant increase in parameters. In this work, we present Mixture-of-Experts as a solution, highlighting that MoEs are much more than a scalability tool. We propose a Multi-Task Correction MoE, where we train the experts to become an ``expert'' of speech-to-text, language-to-text and vision-to-text datasets by learning to route each dataset's tokens to its mapped expert. Experiments on the Open ASR Leaderboard show that we explore a new state-of-the-art performance by achieving an average relative $5.0$% WER reduction and substantial improvements in BLEU scores for speech and translation tasks. On zero-shot evaluation, NeKo outperforms GPT-3.5 and Claude-Opus with $15.5$% to $27.6$% relative WER reduction in the Hyporadise benchmark. NeKo performs competitively on grammar and post-OCR correction as a multi-task model.
VoiceTextBlender: Augmenting Large Language Models with Speech Capabilities via Single-Stage Joint Speech-Text Supervised Fine-Tuning
Peng, Yifan, Puvvada, Krishna C., Chen, Zhehuai, Zelasko, Piotr, Huang, He, Dhawan, Kunal, Hu, Ke, Watanabe, Shinji, Balam, Jagadeesh, Ginsburg, Boris
Recent studies have augmented large language models (LLMs) with speech capabilities, leading to the development of speech language models (SpeechLMs). Earlier SpeechLMs focused on single-turn speech-based question answering (QA), where user input comprised a speech context and a text question. More recent studies have extended this to multi-turn conversations, though they often require complex, multi-stage supervised fine-tuning (SFT) with diverse data. Another critical challenge with SpeechLMs is catastrophic forgetting-where models optimized for speech tasks suffer significant degradation in text-only performance. To mitigate these issues, we propose a novel single-stage joint speech-text SFT approach on the low-rank adaptation (LoRA) of the LLM backbone. Our joint SFT combines text-only SFT data with three types of speech-related data: speech recognition and translation, speech-based QA, and mixed-modal SFT. Compared to previous SpeechLMs with 7B or 13B parameters, our 3B model demonstrates superior performance across various speech benchmarks while preserving the original capabilities on text-only tasks. Furthermore, our model shows emergent abilities of effectively handling previously unseen prompts and tasks, including multi-turn, mixed-modal inputs.
EMMeTT: Efficient Multimodal Machine Translation Training
Żelasko, Piotr, Chen, Zhehuai, Wang, Mengru, Galvez, Daniel, Hrinchuk, Oleksii, Ding, Shuoyang, Hu, Ke, Balam, Jagadeesh, Lavrukhin, Vitaly, Ginsburg, Boris
A rising interest in the modality extension of foundation language models warrants discussion on the most effective, and efficient, multimodal training approach. This work focuses on neural machine translation (NMT) and proposes a joint multimodal training regime of Speech-LLM to include automatic speech translation (AST). We investigate two different foundation model architectures, decoder-only GPT and encoder-decoder T5, extended with Canary-1B's speech encoder. To handle joint multimodal training, we propose a novel training framework called EMMeTT. EMMeTT improves training efficiency with the following: balanced sampling across languages, datasets, and modalities; efficient sequential data iteration; and a novel 2D bucketing scheme for multimodal data, complemented by a batch size optimizer (OOMptimizer). We show that a multimodal training consistently helps with both architectures. Moreover, SALM-T5 trained with EMMeTT retains the original NMT capability while outperforming AST baselines on four-language subsets of FLORES and FLEURS. The resultant Multimodal Translation Model produces strong text and speech translation results at the same time.
Diffusion-based Reinforcement Learning via Q-weighted Variational Policy Optimization
Ding, Shutong, Hu, Ke, Zhang, Zhenhao, Ren, Kan, Zhang, Weinan, Yu, Jingyi, Wang, Jingya, Shi, Ye
Diffusion models have garnered widespread attention in Reinforcement Learning (RL) for their powerful expressiveness and multimodality. It has been verified that utilizing diffusion policies can significantly improve the performance of RL algorithms in continuous control tasks by overcoming the limitations of unimodal policies, such as Gaussian policies, and providing the agent with enhanced exploration capabilities. However, existing works mainly focus on the application of diffusion policies in offline RL, while their incorporation into online RL is less investigated. The training objective of the diffusion model, known as the variational lower bound, cannot be optimized directly in online RL due to the unavailability of 'good' actions. This leads to difficulties in conducting diffusion policy improvement. To overcome this, we propose a novel model-free diffusion-based online RL algorithm, Q-weighted Variational Policy Optimization (QVPO). Specifically, we introduce the Q-weighted variational loss, which can be proved to be a tight lower bound of the policy objective in online RL under certain conditions. To fulfill these conditions, the Q-weight transformation functions are introduced for general scenarios. Additionally, to further enhance the exploration capability of the diffusion policy, we design a special entropy regularization term. We also develop an efficient behavior policy to enhance sample efficiency by reducing the variance of the diffusion policy during online interactions. Consequently, the QVPO algorithm leverages the exploration capabilities and multimodality of diffusion policies, preventing the RL agent from converging to a sub-optimal policy. To verify the effectiveness of QVPO, we conduct comprehensive experiments on MuJoCo benchmarks. The final results demonstrate that QVPO achieves state-of-the-art performance on both cumulative reward and sample efficiency.
Multilingual and Fully Non-Autoregressive ASR with Large Language Model Fusion: A Comprehensive Study
Huang, W. Ronny, Allauzen, Cyril, Chen, Tongzhou, Gupta, Kilol, Hu, Ke, Qin, James, Zhang, Yu, Wang, Yongqiang, Chang, Shuo-Yiin, Sainath, Tara N.
In the era of large models, the autoregressive nature of decoding often results in latency serving as a significant bottleneck. We propose a non-autoregressive LM-fused ASR system that effectively leverages the parallelization capabilities of accelerator hardware. Our approach combines the Universal Speech Model (USM) and the PaLM 2 language model in per-segment scoring mode, achieving an average relative WER improvement across all languages of 10.8% on FLEURS and 3.6% on YouTube captioning. Furthermore, our comprehensive ablation study analyzes key parameters such as LLM size, context length, vocabulary size, fusion methodology. For instance, we explore the impact of LLM size ranging from 128M to 340B parameters on ASR performance. This study provides valuable insights into the factors influencing the effectiveness of practical large-scale LM-fused speech recognition systems.
Feature Norm Regularized Federated Learning: Transforming Skewed Distributions into Global Insights
Hu, Ke, Qiu, WeiDong, Tang, Peng
In the field of federated learning, addressing non-independent and identically distributed (non-i.i.d.) data remains a quintessential challenge for improving global model performance. This work introduces the Feature Norm Regularized Federated Learning (FNR-FL) algorithm, which uniquely incorporates class average feature norms to enhance model accuracy and convergence in non-i.i.d. scenarios. Our comprehensive analysis reveals that FNR-FL not only accelerates convergence but also significantly surpasses other contemporary federated learning algorithms in test accuracy, particularly under feature distribution skew scenarios. The novel modular design of FNR-FL facilitates seamless integration with existing federated learning frameworks, reinforcing its adaptability and potential for widespread application. We substantiate our claims through rigorous empirical evaluations, demonstrating FNR-FL's exceptional performance across various skewed data distributions. Relative to FedAvg, FNR-FL exhibits a substantial 66.24\% improvement in accuracy and a significant 11.40\% reduction in training time, underscoring its enhanced effectiveness and efficiency.
Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages
Zhang, Yu, Han, Wei, Qin, James, Wang, Yongqiang, Bapna, Ankur, Chen, Zhehuai, Chen, Nanxin, Li, Bo, Axelrod, Vera, Wang, Gary, Meng, Zhong, Hu, Ke, Rosenberg, Andrew, Prabhavalkar, Rohit, Park, Daniel S., Haghani, Parisa, Riesa, Jason, Perng, Ginger, Soltau, Hagen, Strohman, Trevor, Ramabhadran, Bhuvana, Sainath, Tara, Moreno, Pedro, Chiu, Chung-Cheng, Schalkwyk, Johan, Beaufays, Françoise, Wu, Yonghui
We introduce the Universal Speech Model (USM), a single large model that performs automatic speech recognition (ASR) across 100+ languages. This is achieved by pre-training the encoder of the model on a large unlabeled multilingual dataset of 12 million (M) hours spanning over 300 languages, and fine-tuning on a smaller labeled dataset. We use multilingual pre-training with random-projection quantization and speech-text modality matching to achieve state-of-the-art performance on downstream multilingual ASR and speech-to-text translation tasks. We also demonstrate that despite using a labeled training set 1/7-th the size of that used for the Whisper model [1], our model exhibits comparable or better performance on both in-domain and out-of-domain speech recognition tasks across many languages.
Improving Joint Speech-Text Representations Without Alignment
Peyser, Cal, Meng, Zhong, Hu, Ke, Prabhavalkar, Rohit, Rosenberg, Andrew, Sainath, Tara N., Picheny, Michael, Cho, Kyunghyun
The last year has seen astonishing progress in text-prompted image generation premised on the idea of a cross-modal representation space in which the text and image domains are represented jointly. In ASR, this idea has found application as joint speech-text encoders that can scale to the capacities of very large parameter models by being trained on both unpaired speech and text. While these methods show promise, they have required special treatment of the sequence-length mismatch inherent in speech and text, either by up-sampling heuristics or an explicit alignment model. In this work, we offer evidence that joint speech-text encoders naturally achieve consistent representations across modalities by disregarding sequence length, and argue that consistency losses could forgive length differences and simply assume the best alignment. We show that such a loss improves downstream WER in both a large-parameter monolingual and multilingual system.