Goto

Collaborating Authors

 Hu, Guoping


From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems

arXiv.org Artificial Intelligence

Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.


Improving Contextual Faithfulness of Large Language Models via Retrieval Heads-Induced Optimization

arXiv.org Artificial Intelligence

Ensuring contextual faithfulness in retrieval-augmented large language models (LLMs) is crucial for building trustworthy information-seeking systems, particularly in long-form question-answering (LFQA) scenarios. In this work, we identify a salient correlation between LFQA faithfulness and retrieval heads, a set of attention heads responsible for retrieving contextual information. Leveraging this insight, we propose RHIO, a framework designed to teach LLMs to explicitly discriminate between faithful and unfaithful generations. RHIO first augments unfaithful samples that simulate realistic model-intrinsic errors by selectively masking retrieval heads. Then, these samples are incorporated into joint training, enabling the model to distinguish unfaithful outputs from faithful ones conditioned on control tokens. Furthermore, these control tokens are leveraged to self-induce contrastive outputs, amplifying their difference through contrastive decoding. Additionally, to facilitate the evaluation of contextual faithfulness, we also introduce GroundBench, a comprehensive benchmark compiled from five existing LFQA datasets. Extensive experimental results on GroundBench demonstrate that RHIO significantly improves faithfulness, even outperforming GPT-4o.


ChemEval: A Comprehensive Multi-Level Chemical Evaluation for Large Language Models

arXiv.org Artificial Intelligence

There is a growing interest in the role that LLMs play in chemistry which lead to an increased focus on the development of LLMs benchmarks tailored to chemical domains to assess the performance of LLMs across a spectrum of chemical tasks varying in type and complexity. However, existing benchmarks in this domain fail to adequately meet the specific requirements of chemical research professionals. To this end, we propose \textbf{\textit{ChemEval}}, which provides a comprehensive assessment of the capabilities of LLMs across a wide range of chemical domain tasks. Specifically, ChemEval identified 4 crucial progressive levels in chemistry, assessing 12 dimensions of LLMs across 42 distinct chemical tasks which are informed by open-source data and the data meticulously crafted by chemical experts, ensuring that the tasks have practical value and can effectively evaluate the capabilities of LLMs. In the experiment, we evaluate 12 mainstream LLMs on ChemEval under zero-shot and few-shot learning contexts, which included carefully selected demonstration examples and carefully designed prompts. The results show that while general LLMs like GPT-4 and Claude-3.5 excel in literature understanding and instruction following, they fall short in tasks demanding advanced chemical knowledge. Conversely, specialized LLMs exhibit enhanced chemical competencies, albeit with reduced literary comprehension. This suggests that LLMs have significant potential for enhancement when tackling sophisticated tasks in the field of chemistry. We believe our work will facilitate the exploration of their potential to drive progress in chemistry. Our benchmark and analysis will be available at {\color{blue} \url{https://github.com/USTC-StarTeam/ChemEval}}.


GIFT: Graph-Induced Fine-Tuning for Multi-Party Conversation Understanding

arXiv.org Artificial Intelligence

Addressing the issues of who saying what to whom in multi-party conversations (MPCs) has recently attracted a lot of research attention. However, existing methods on MPC understanding typically embed interlocutors and utterances into sequential information flows, or utilize only the superficial of inherent graph structures in MPCs. To this end, we present a plug-and-play and lightweight method named graph-induced fine-tuning (GIFT) which can adapt various Transformer-based pre-trained language models (PLMs) for universal MPC understanding. In detail, the full and equivalent connections among utterances in regular Transformer ignore the sparse but distinctive dependency of an utterance on another in MPCs. To distinguish different relationships between utterances, four types of edges are designed to integrate graph-induced signals into attention mechanisms to refine PLMs originally designed for processing sequential texts. We evaluate GIFT by implementing it into three PLMs, and test the performance on three downstream tasks including addressee recognition, speaker identification and response selection. Experimental results show that GIFT can significantly improve the performance of three PLMs on three downstream tasks and two benchmarks with only 4 additional parameters per encoding layer, achieving new state-of-the-art performance on MPC understanding.


JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for Multi-task Mathematical Problem Solving

arXiv.org Artificial Intelligence

Although pre-trained language models~(PLMs) have recently advanced the research progress in mathematical reasoning, they are not specially designed as a capable multi-task solver, suffering from high cost for multi-task deployment (\eg a model copy for a task) and inferior performance on complex mathematical problems in practical applications. To address these issues, in this paper, we propose \textbf{JiuZhang~2.0}, a unified Chinese PLM specially for multi-task mathematical problem solving. Our idea is to maintain a moderate-sized model and employ the \emph{cross-task knowledge sharing} to improve the model capacity in a multi-task setting. Specially, we construct a Mixture-of-Experts~(MoE) architecture for modeling mathematical text, so as to capture the common mathematical knowledge across tasks. For optimizing the MoE architecture, we design \emph{multi-task continual pre-training} and \emph{multi-task fine-tuning} strategies for multi-task adaptation. These training strategies can effectively decompose the knowledge from the task data and establish the cross-task sharing via expert networks. In order to further improve the general capacity of solving different complex tasks, we leverage large language models~(LLMs) as complementary models to iteratively refine the generated solution by our PLM, via in-context learning. Extensive experiments have demonstrated the effectiveness of our model.


SHINE: Syntax-augmented Hierarchical Interactive Encoder for Zero-shot Cross-lingual Information Extraction

arXiv.org Artificial Intelligence

Zero-shot cross-lingual information extraction(IE) aims at constructing an IE model for some low-resource target languages, given annotations exclusively in some rich-resource languages. Recent studies based on language-universal features have shown their effectiveness and are attracting increasing attention. However, prior work has neither explored the potential of establishing interactions between language-universal features and contextual representations nor incorporated features that can effectively model constituent span attributes and relationships between multiple spans. In this study, a syntax-augmented hierarchical interactive encoder (SHINE) is proposed to transfer cross-lingual IE knowledge. The proposed encoder is capable of interactively capturing complementary information between features and contextual information, to derive language-agnostic representations for various IE tasks. Concretely, a multi-level interaction network is designed to hierarchically interact the complementary information to strengthen domain adaptability. Besides, in addition to the well-studied syntax features of part-of-speech and dependency relation, a new syntax feature of constituency structure is introduced to model the constituent span information which is crucial for IE. Experiments across seven languages on three IE tasks and four benchmarks verify the effectiveness and generalization ability of the proposed method.


Multi-Stage Coarse-to-Fine Contrastive Learning for Conversation Intent Induction

arXiv.org Artificial Intelligence

Intent recognition is critical for task-oriented dialogue systems. However, for emerging domains and new services, it is difficult to accurately identify the key intent of a conversation due to time-consuming data annotation and comparatively poor model transferability. Therefore, the automatic induction of dialogue intention is very important for intelligent dialogue systems. This paper presents our solution to Track 2 of Intent Induction from Conversations for Task-Oriented Dialogue at the Eleventh Dialogue System Technology Challenge (DSTC11). The essence of intention clustering lies in distinguishing the representation of different dialogue utterances. The key to automatic intention induction is that, for any given set of new data, the sentence representation obtained by the model can be well distinguished from different labels. Therefore, we propose a multi-stage coarse-to-fine contrastive learning model training scheme including unsupervised contrastive learning pre-training, supervised contrastive learning pre-training, and fine-tuning with joint contrastive learning and clustering to obtain a better dialogue utterance representation model for the clustering task. In the released DSTC11 Track 2 evaluation results, our proposed system ranked first on both of the two subtasks of this Track.


KCAT: A Knowledge-Constraint Typing Annotation Tool

arXiv.org Artificial Intelligence

Fine-grained Entity Typing is a tough task which suffers from noise samples extracted from distant supervision. Thousands of manually annotated samples can achieve greater performance than millions of samples generated by the previous distant supervision method. Whereas, it's hard for human beings to differentiate and memorize thousands of types, thus making large-scale human labeling hardly possible. In this paper, we introduce a Knowledge-Constraint Typing Annotation Tool (KCAT), which is efficient for fine-grained entity typing annotation. KCAT reduces the size of candidate types to an acceptable range for human beings through entity linking and provides a Multi-step Typing scheme to revise the entity linking result. Moreover, KCAT provides an efficient Annotator Client to accelerate the annotation process and a comprehensive Manager Module to analyse crowdsourcing annotations. Experiment shows that KCAT can significantly improve annotation efficiency, the time consumption increases slowly as the size of type set expands.


Transcribing Content from Structural Images with Spotlight Mechanism

arXiv.org Machine Learning

Transcribing content from structural images, e.g., writing notes from music scores, is a challenging task as not only the content objects should be recognized, but the internal structure should also be preserved. Existing image recognition methods mainly work on images with simple content (e.g., text lines with characters), but are not capable to identify ones with more complex content (e.g., structured symbols), which often follow a fine-grained grammar. To this end, in this paper, we propose a hierarchical Spotlight Transcribing Network (STN) framework followed by a two-stage "where-to-what" solution. Specifically, we first decide "where-to-look" through a novel spotlight mechanism to focus on different areas of the original image following its structure. Then, we decide "what-to-write" by developing a GRU based network with the spotlight areas for transcribing the content accordingly. Moreover, we propose two implementations on the basis of STN, i.e., STNM and STNR, where the spotlight movement follows the Markov property and Recurrent modeling, respectively. We also design a reinforcement method to refine the framework by self-improving the spotlight mechanism. We conduct extensive experiments on many structural image datasets, where the results clearly demonstrate the effectiveness of STN framework.


Improving Distantly-supervised Entity Typing with Compact Latent Space Clustering

arXiv.org Artificial Intelligence

Recently, distant supervision has gained great success on Fine-grained Entity Typing (FET). Despite its efficiency in reducing manual labeling efforts, it also brings the challenge of dealing with false entity type labels, as distant supervision assigns labels in a context agnostic manner. Existing works alleviated this issue with partial-label loss, but usually suffer from confirmation bias, which means the classifier fit a pseudo data distribution given by itself. In this work, we propose to regularize distantly supervised models with Compact Latent Space Clustering (CLSC) to bypass this problem and effectively utilize noisy data yet. Our proposed method first dynamically constructs a similarity graph of different entity mentions; infer the labels of noisy instances via label propagation. Based on the inferred labels, mention embeddings are updated accordingly to encourage entity mentions with close semantics to form a compact cluster in the embedding space,thus leading to better classification performance. Extensive experiments on standard benchmarks show that our CLSC model consistently outperforms state-of-the-art distantly supervised entity typing systems by a significant margin.