Hou, Chengbin
FedAGHN: Personalized Federated Learning with Attentive Graph HyperNetworks
Song, Jiarui, Shen, Yunheng, Hou, Chengbin, Wang, Pengyu, Wang, Jinbao, Tang, Ke, Lv, Hairong
Personalized Federated Learning (PFL) aims to address the statistical heterogeneity of data across clients by learning the personalized model for each client. Among various PFL approaches, the personalized aggregation-based approach conducts parameter aggregation in the server-side aggregation phase to generate personalized models, and focuses on learning appropriate collaborative relationships among clients for aggregation. However, the collaborative relationships vary in different scenarios and even at different stages of the FL process. To this end, we propose Personalized Federated Learning with Attentive Graph HyperNetworks (FedAGHN), which employs Attentive Graph HyperNetworks (AGHNs) to dynamically capture fine-grained collaborative relationships and generate client-specific personalized initial models. Specifically, AGHNs empower graphs to explicitly model the client-specific collaborative relationships, construct collaboration graphs, and introduce tunable attentive mechanism to derive the collaboration weights, so that the personalized initial models can be obtained by aggregating parameters over the collaboration graphs. Extensive experiments can demonstrate the superiority of FedAGHN. Moreover, a series of visualizations are presented to explore the effectiveness of collaboration graphs learned by FedAGHN.
Node Importance Estimation Leveraging LLMs for Semantic Augmentation in Knowledge Graphs
Lin, Xinyu, Zhang, Tianyu, Hou, Chengbin, Wang, Jinbao, Xue, Jianye, Lv, Hairong
Node Importance Estimation (NIE) is a task that quantifies the importance of node in a graph. Recent research has investigated to exploit various information from Knowledge Graphs (KGs) to estimate node importance scores. However, the semantic information in KGs could be insufficient, missing, and inaccurate, which would limit the performance of existing NIE models. To address these issues, we leverage Large Language Models (LLMs) for semantic augmentation thanks to the LLMs' extra knowledge and ability of integrating knowledge from both LLMs and KGs. To this end, we propose the LLMs Empowered Node Importance Estimation (LENIE) method to enhance the semantic information in KGs for better supporting NIE tasks. To our best knowledge, this is the first work incorporating LLMs into NIE. Specifically, LENIE employs a novel clustering-based triplet sampling strategy to extract diverse knowledge of a node sampled from the given KG. After that, LENIE adopts the node-specific adaptive prompts to integrate the sampled triplets and the original node descriptions, which are then fed into LLMs for generating richer and more precise augmented node descriptions. These augmented descriptions finally initialize node embeddings for boosting the downstream NIE model performance. Extensive experiments demonstrate LENIE's effectiveness in addressing semantic deficiencies in KGs, enabling more informative semantic augmentation and enhancing existing NIE models to achieve the state-of-the-art performance. The source code of LENIE is freely available at \url{https://github.com/XinyuLin-FZ/LENIE}.
Parse Trees Guided LLM Prompt Compression
Mao, Wenhao, Hou, Chengbin, Zhang, Tianyu, Lin, Xinyu, Tang, Ke, Lv, Hairong
Offering rich contexts to Large Language Models (LLMs) has shown to boost the performance in various tasks, but the resulting longer prompt would increase the computational cost and might exceed the input limit of LLMs. Recently, some prompt compression methods have been suggested to shorten the length of prompts by using language models to generate shorter prompts or by developing computational models to select important parts of original prompt. The generative compression methods would suffer from issues like hallucination, while the selective compression methods have not involved linguistic rules and overlook the global structure of prompt. To this end, we propose a novel selective compression method called PartPrompt. It first obtains a parse tree for each sentence based on linguistic rules, and calculates local information entropy for each node in a parse tree. These local parse trees are then organized into a global tree according to the hierarchical structure such as the dependency of sentences, paragraphs, and sections. After that, the root-ward propagation and leaf-ward propagation are proposed to adjust node values over the global tree. Finally, a recursive algorithm is developed to prune the global tree based on the adjusted node values. The experiments show that PartPrompt receives the state-of-the-art performance across various datasets, metrics, compression ratios, and target LLMs for inference. The in-depth ablation studies confirm the effectiveness of designs in PartPrompt, and other additional experiments also demonstrate its superiority in terms of the coherence of compressed prompts and in the extreme long prompt scenario.
Label Informed Contrastive Pretraining for Node Importance Estimation on Knowledge Graphs
Zhang, Tianyu, Hou, Chengbin, Jiang, Rui, Zhang, Xuegong, Zhou, Chenghu, Tang, Ke, Lv, Hairong
Node Importance Estimation (NIE) is a task of inferring importance scores of the nodes in a graph. Due to the availability of richer data and knowledge, recent research interests of NIE have been dedicating to knowledge graphs for predicting future or missing node importance scores. Existing state-of-the-art NIE methods train the model by available labels, and they consider every interested node equally before training. However, the nodes with higher importance often require or receive more attention in real-world scenarios, e.g., people may care more about the movies or webpages with higher importance. To this end, we introduce Label Informed ContrAstive Pretraining (LICAP) to the NIE problem for being better aware of the nodes with high importance scores. Specifically, LICAP is a novel type of contrastive learning framework that aims to fully utilize the continuous labels to generate contrastive samples for pretraining embeddings. Considering the NIE problem, LICAP adopts a novel sampling strategy called top nodes preferred hierarchical sampling to first group all interested nodes into a top bin and a non-top bin based on node importance scores, and then divide the nodes within top bin into several finer bins also based on the scores. The contrastive samples are generated from those bins, and are then used to pretrain node embeddings of knowledge graphs via a newly proposed Predicate-aware Graph Attention Networks (PreGAT), so as to better separate the top nodes from non-top nodes, and distinguish the top nodes within top bin by keeping the relative order among finer bins. Extensive experiments demonstrate that the LICAP pretrained embeddings can further boost the performance of existing NIE methods and achieve the new state-of-the-art performance regarding both regression and ranking metrics. The source code for reproducibility is available at https://github.com/zhangtia16/LICAP
Fossil Image Identification using Deep Learning Ensembles of Data Augmented Multiviews
Hou, Chengbin, Lin, Xinyu, Huang, Hanhui, Xu, Sheng, Fan, Junxuan, Shi, Yukun, Lv, Hairong
Identification of fossil species is crucial to evolutionary studies. Recent advances from deep learning have shown promising prospects in fossil image identification. However, the quantity and quality of labeled fossil images are often limited due to fossil preservation, conditioned sampling, and expensive and inconsistent label annotation by domain experts, which pose great challenges to training deep learning based image classification models. To address these challenges, we follow the idea of the wisdom of crowds and propose a multiview ensemble framework, which collects Original (O), Gray (G), and Skeleton (S) views of each fossil image reflecting its different characteristics to train multiple base models, and then makes the final decision via soft voting. Experiments on the largest fusulinid dataset with 2400 images show that the proposed OGS consistently outperforms baselines (using a single model for each view), and obtains superior or comparable performance compared to OOO (using three base models for three the same Original views). Besides, as the training data decreases, the proposed framework achieves more gains. While considering the identification consistency estimation with respect to human experts, OGS receives the highest agreement with the original labels of dataset and with the re-identifications of two human experts. The validation performance provides a quantitative estimation of consistency across different experts and genera. We conclude that the proposed framework can present state-of-the-art performance in the fusulinid fossil identification case study. This framework is designed for general fossil identification and it is expected to see applications to other fossil datasets in future work. The source code is publicly available at https://github.com/houchengbin/Fossil-Image-Identification to benefit future research in fossil image identification.
Recent Advances in Reliable Deep Graph Learning: Inherent Noise, Distribution Shift, and Adversarial Attack
Li, Jintang, Wu, Bingzhe, Hou, Chengbin, Fu, Guoji, Bian, Yatao, Chen, Liang, Huang, Junzhou, Zheng, Zibin
Deep graph learning (DGL) has achieved remarkable progress in both business and scientific areas ranging from finance and e-commerce to drug and advanced material discovery. Despite the progress, applying DGL to real-world applications faces a series of reliability threats including inherent noise, distribution shift, and adversarial attacks. This survey aims to provide a comprehensive review of recent advances for improving the reliability of DGL algorithms against the above threats. In contrast to prior related surveys which mainly focus on adversarial attacks and defense, our survey covers more reliability-related aspects of DGL, i.e., inherent noise and distribution shift. Additionally, we discuss the relationships among above aspects and highlight some important issues to be explored in future research.
Learning Topological Representation for Networks via Hierarchical Sampling
Fu, Guoji, Hou, Chengbin, Yao, Xin
Abstract--The topological information is essential for studying the relationship between nodes in a network. Recently, Network Representation Learning (NRL), which projects a network into a low-dimensional vector space, has been shown their advantages inanalyzing large-scale networks. However, most existing NRL methods are designed to preserve the local topology of a network, they fail to capture the global topology. To tackle this issue, we propose a new NRL framework, named HSRL, to help existing NRL methods capture both the local and global topological information of a network. Then, an existing NRL method is used to learn node embeddings for each compressed network. Finally, the node embeddings of the input network are obtained by concatenating the node embeddings from all compressed networks. Empirical studies for link prediction on five real-world datasets demonstrate the advantages of HSRL over state-of-the-art methods. I. INTRODUCTION The science of networks has been widely used to understand thebehaviours of complex systems.