Hossain, M. Shamim
EcoWeedNet: A Lightweight and Automated Weed Detection Method for Sustainable Next-Generation Agricultural Consumer Electronics
Khater, Omar H., Siddiqui, Abdul Jabbar, Hossain, M. Shamim
Sustainable agriculture plays a crucial role in ensuring world food security for consumers. A critical challenge faced by sustainable precision agriculture is weed growth, as weeds share essential resources with the crops, such as water, soil nutrients, and sunlight, which notably affect crop yields. The traditional methods employed to combat weeds include the usage of chemical herbicides and manual weed removal methods. However, these could damage the environment and pose health hazards. The adoption of automated computer vision technologies and ground agricultural consumer electronic vehicles in precision agriculture offers sustainable, low-carbon solutions. However, prior works suffer from issues such as low accuracy and precision and high computational expense. This work proposes EcoWeedNet, a novel model with enhanced weed detection performance without adding significant computational complexity, aligning with the goals of low-carbon agricultural practices. Additionally, our model is lightweight and optimal for deployment on ground-based consumer electronic agricultural vehicles and robots. The effectiveness of the proposed model is demonstrated through comprehensive experiments on the CottonWeedDet12 benchmark dataset reflecting real-world scenarios. EcoWeedNet achieves performance close to that of large models yet with much fewer parameters. (approximately 4.21% of the parameters and 6.59% of the GFLOPs of YOLOv4). This work contributes effectively to the development of automated weed detection methods for next-generation agricultural consumer electronics featuring lower energy consumption and lower carbon footprint. This work paves the way forward for sustainable agricultural consumer technologies.
ViT Enhanced Privacy-Preserving Secure Medical Data Sharing and Classification
Amin, Al, Hasan, Kamrul, Ullah, Sharif, Hossain, M. Shamim
Privacy-preserving and secure data sharing are critical for medical image analysis while maintaining accuracy and minimizing computational overhead are also crucial. Applying existing deep neural networks (DNNs) to encrypted medical data is not always easy and often compromises performance and security. To address these limitations, this research introduces a secure framework consisting of a learnable encryption method based on the block-pixel operation to encrypt the data and subsequently integrate it with the Vision Transformer (ViT). The proposed framework ensures data privacy and security by creating unique scrambling patterns per key, providing robust performance against leading bit attacks and minimum difference attacks.
Harnessing Federated Generative Learning for Green and Sustainable Internet of Things
Qi, Yuanhang, Hossain, M. Shamim
The rapid proliferation of devices in the Internet of Things (IoT) has ushered in a transformative era of data-driven connectivity across various domains. However, this exponential growth has raised pressing concerns about environmental sustainability and data privacy. In response to these challenges, this paper introduces One-shot Federated Learning (OSFL), an innovative paradigm that harmonizes sustainability and machine learning within IoT ecosystems. OSFL revolutionizes the traditional Federated Learning (FL) workflow by condensing multiple iterative communication rounds into a single operation, thus significantly reducing energy consumption, communication overhead, and latency. This breakthrough is coupled with the strategic integration of generative learning techniques, ensuring robust data privacy while promoting efficient knowledge sharing among IoT devices. By curtailing resource utilization, OSFL aligns seamlessly with the vision of green and sustainable IoT, effectively extending device lifespans and mitigating their environmental footprint. Our research underscores the transformative potential of OSFL, poised to reshape the landscape of IoT applications across domains such as energy-efficient smart cities and groundbreaking healthcare solutions. This contribution marks a pivotal step towards a more responsible, sustainable, and technologically advanced future.
Generative Model-Driven Synthetic Training Image Generation: An Approach to Cognition in Rail Defect Detection
Ferdousi, Rahatara, Yang, Chunsheng, Hossain, M. Anwar, Laamarti, Fedwa, Hossain, M. Shamim, Saddik, Abdulmotaleb El
Recent advancements in cognitive computing, with the integration of deep learning techniques, have facilitated the development of intelligent cognitive systems (ICS). This is particularly beneficial in the context of rail defect detection, where the ICS would emulate human-like analysis of image data for defect patterns. Despite the success of Convolutional Neural Networks (CNN) in visual defect classification, the scarcity of large datasets for rail defect detection remains a challenge due to infrequent accident events that would result in defective parts and images. Contemporary researchers have addressed this data scarcity challenge by exploring rule-based and generative data augmentation models. Among these, Variational Autoencoder (VAE) models can generate realistic data without extensive baseline datasets for noise modeling. This study proposes a VAE-based synthetic image generation technique for rail defects, incorporating weight decay regularization and image reconstruction loss to prevent overfitting. The proposed method is applied to create a synthetic dataset for the Canadian Pacific Railway (CPR) with just 50 real samples across five classes. Remarkably, 500 synthetic samples are generated with a minimal reconstruction loss of 0.021. A Visual Transformer (ViT) model underwent fine-tuning using this synthetic CPR dataset, achieving high accuracy rates (98%-99%) in classifying the five defect classes. This research offers a promising solution to the data scarcity challenge in rail defect detection, showcasing the potential for robust ICS development in this domain.
Deep Anomaly Detection for Time-series Data in Industrial IoT: A Communication-Efficient On-device Federated Learning Approach
Liu, Yi, Garg, Sahil, Nie, Jiangtian, Zhang, Yang, Xiong, Zehui, Kang, Jiawen, Hossain, M. Shamim
Since edge device failures (i.e., anomalies) seriously affect the production of industrial products in Industrial IoT (IIoT), accurately and timely detecting anomalies is becoming increasingly important. Furthermore, data collected by the edge device may contain the user's private data, which is challenging the current detection approaches as user privacy is calling for the public concern in recent years. With this focus, this paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT. Specifically, we first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability. Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies. The AMCNN-LSTM model uses attention mechanism-based CNN units to capture important fine-grained features, thereby preventing memory loss and gradient dispersion problems. Furthermore, this model retains the advantages of LSTM unit in predicting time series data. Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-\textit{k} selection to improve communication efficiency. Extensive experiment studies on four real-world datasets demonstrate that the proposed framework can accurately and timely detect anomalies and also reduce the communication overhead by 50\% compared to the federated learning framework that does not use a gradient compression scheme.