Hopkins, Max
The Role of Randomness in Stability
Hopkins, Max, Moran, Shay
Stability is a central property in learning and statistics promising the output of an algorithm $A$ does not change substantially when applied to similar datasets $S$ and $S'$. It is an elementary fact that any sufficiently stable algorithm (e.g.\ one returning the same result with high probability, satisfying privacy guarantees, etc.) must be randomized. This raises a natural question: can we quantify how much randomness is needed for algorithmic stability? We study the randomness complexity of two influential notions of stability in learning: replicability, which promises $A$ usually outputs the same result when run over samples from the same distribution (and shared random coins), and differential privacy, which promises the output distribution of $A$ remains similar under neighboring datasets. The randomness complexity of these notions was studied recently in (Dixon et al. ICML 2024) and (Cannone et al. ITCS 2024) for basic $d$-dimensional tasks (e.g. estimating the bias of $d$ coins), but little is known about the measures more generally or in complex settings like classification. Toward this end, we prove a `weak-to-strong' boosting theorem for stability: the randomness complexity of a task $M$ (either under replicability or DP) is tightly controlled by the best replication probability of any deterministic algorithm solving the task, a weak measure called `global stability' that is universally capped at $\frac{1}{2}$ (Chase et al. FOCS 2023). Using this, we characterize the randomness complexity of PAC Learning: a class has bounded randomness complexity iff it has finite Littlestone dimension, and moreover scales at worst logarithmically in the excess error of the learner. This resolves a question of (Chase et al. STOC 2024) who asked for such a characterization in the equivalent language of (error-dependent) `list-replicability'.
Stability is Stable: Connections between Replicability, Privacy, and Adaptive Generalization
Bun, Mark, Gaboardi, Marco, Hopkins, Max, Impagliazzo, Russell, Lei, Rex, Pitassi, Toniann, Sivakumar, Satchit, Sorrell, Jessica
The notion of replicable algorithms was introduced in Impagliazzo et al. [STOC '22] to describe randomized algorithms that are stable under the resampling of their inputs. More precisely, a replicable algorithm gives the same output with high probability when its randomness is fixed and it is run on a new i.i.d. sample drawn from the same distribution. Using replicable algorithms for data analysis can facilitate the verification of published results by ensuring that the results of an analysis will be the same with high probability, even when that analysis is performed on a new data set. In this work, we establish new connections and separations between replicability and standard notions of algorithmic stability. In particular, we give sample-efficient algorithmic reductions between perfect generalization, approximate differential privacy, and replicability for a broad class of statistical problems. Conversely, we show any such equivalence must break down computationally: there exist statistical problems that are easy under differential privacy, but that cannot be solved replicably without breaking public-key cryptography. Furthermore, these results are tight: our reductions are statistically optimal, and we show that any computational separation between DP and replicability must imply the existence of one-way functions. Our statistical reductions give a new algorithmic framework for translating between notions of stability, which we instantiate to answer several open questions in replicability and privacy. This includes giving sample-efficient replicable algorithms for various PAC learning, distribution estimation, and distribution testing problems, algorithmic amplification of $\delta$ in approximate DP, conversions from item-level to user-level privacy, and the existence of private agnostic-to-realizable learning reductions under structured distributions.
Do PAC-Learners Learn the Marginal Distribution?
Hopkins, Max, Kane, Daniel M., Lovett, Shachar, Mahajan, Gaurav
We study a foundational variant of Valiant and Vapnik and Chervonenkis' Probably Approximately Correct (PAC)-Learning in which the adversary is restricted to a known family of marginal distributions $\mathscr{P}$. In particular, we study how the PAC-learnability of a triple $(\mathscr{P},X,H)$ relates to the learners ability to infer \emph{distributional} information about the adversary's choice of $D \in \mathscr{P}$. To this end, we introduce the `unsupervised' notion of \emph{TV-Learning}, which, given a class $(\mathscr{P},X,H)$, asks the learner to approximate $D$ from unlabeled samples with respect to a natural class-conditional total variation metric. In the classical distribution-free setting, we show that TV-learning is \emph{equivalent} to PAC-Learning: in other words, any learner must infer near-maximal information about $D$. On the other hand, we show this characterization breaks down for general $\mathscr{P}$, where PAC-Learning is strictly sandwiched between two approximate variants we call `Strong' and `Weak' TV-learning, roughly corresponding to unsupervised learners that estimate most relevant distances in $D$ with respect to $H$, but differ in whether the learner \emph{knows} the set of well-estimated events. Finally, we observe that TV-learning is in fact equivalent to the classical notion of \emph{uniform estimation}, and thereby give a strong refutation of the uniform convergence paradigm in supervised learning.
Robust Empirical Risk Minimization with Tolerance
Bhattacharjee, Robi, Hopkins, Max, Kumar, Akash, Yu, Hantao, Chaudhuri, Kamalika
Developing simple, sample-efficient learning algorithms for robust classification is a pressing issue in today's tech-dominated world, and current theoretical techniques requiring exponential sample complexity and complicated improper learning rules fall far from answering the need. In this work we study the fundamental paradigm of (robust) $\textit{empirical risk minimization}$ (RERM), a simple process in which the learner outputs any hypothesis minimizing its training error. RERM famously fails to robustly learn VC classes (Montasser et al., 2019a), a bound we show extends even to `nice' settings such as (bounded) halfspaces. As such, we study a recent relaxation of the robust model called $\textit{tolerant}$ robust learning (Ashtiani et al., 2022) where the output classifier is compared to the best achievable error over slightly larger perturbation sets. We show that under geometric niceness conditions, a natural tolerant variant of RERM is indeed sufficient for $\gamma$-tolerant robust learning VC classes over $\mathbb{R}^d$, and requires only $\tilde{O}\left( \frac{VC(H)d\log \frac{D}{\gamma\delta}}{\epsilon^2}\right)$ samples for robustness regions of (maximum) diameter $D$.
Active Learning Polynomial Threshold Functions
Ben-Eliezer, Omri, Hopkins, Max, Yang, Chutong, Yu, Hantao
We initiate the study of active learning polynomial threshold functions (PTFs). While traditional lower bounds imply that even univariate quadratics cannot be non-trivially actively learned, we show that allowing the learner basic access to the derivatives of the underlying classifier circumvents this issue and leads to a computationally efficient algorithm for active learning degree-$d$ univariate PTFs in $\tilde{O}(d^3\log(1/\varepsilon\delta))$ queries. We also provide near-optimal algorithms and analyses for active learning PTFs in several average case settings. Finally, we prove that access to derivatives is insufficient for active learning multivariate PTFs, even those of just two variables.
Realizable Learning is All You Need
Hopkins, Max, Kane, Daniel, Lovett, Shachar, Mahajan, Gaurav
The equivalence of realizable and agnostic learnability is a fundamental phenomenon in learning theory. With variants ranging from classical settings like PAC learning and regression to recent trends such as adversarially robust and private learning, it's surprising that we still lack a unified theory; traditional proofs of the equivalence tend to be disparate, and rely on strong model-specific assumptions like uniform convergence and sample compression. In this work, we give the first model-independent framework explaining the equivalence of realizable and agnostic learnability: a three-line blackbox reduction that simplifies, unifies, and extends our understanding across a wide variety of settings. This includes models with no known characterization of learnability such as learning with arbitrary distributional assumptions or general loss, as well as a host of other popular settings such as robust learning, partial learning, fair learning, and the statistical query model. More generally, we argue that the equivalence of realizable and agnostic learning is actually a special case of a broader phenomenon we call property generalization: any desirable property of a learning algorithm (e.g.\ noise tolerance, privacy, stability) that can be satisfied over finite hypothesis classes extends (possibly in some variation) to any learnable hypothesis class.
Bounded Memory Active Learning through Enriched Queries
Hopkins, Max, Kane, Daniel, Lovett, Shachar, Moshkovitz, Michal
The explosive growth of easily-accessible unlabeled data has lead to growing interest in active learning, a paradigm in which data-hungry learning algorithms adaptively select informative examples in order to lower prohibitively expensive labeling costs. Unfortunately, in standard worst-case models of learning, the active setting often provides no improvement over non-adaptive algorithms. To combat this, a series of recent works have considered a model in which the learner may ask enriched queries beyond labels. While such models have seen success in drastically lowering label costs, they tend to come at the expense of requiring large amounts of memory. In this work, we study what families of classifiers can be learned in bounded memory. To this end, we introduce a novel streaming-variant of enriched-query active learning along with a natural combinatorial parameter called lossless sample compression that is sufficient for learning not only with bounded memory, but in a query-optimal and computationally efficient manner as well. Finally, we give three fundamental examples of classifier families with small, easy to compute lossless compression schemes when given access to basic enriched queries: axis-aligned rectangles, decision trees, and halfspaces in two dimensions.
Noise-tolerant, Reliable Active Classification with Comparison Queries
Hopkins, Max, Kane, Daniel, Lovett, Shachar, Mahajan, Gaurav
With the explosion of massive, widely available unlabeled data in the past years, finding label and time efficient, robust learning algorithms has become ever more important in theory and in practice. We study the paradigm of active learning, in which algorithms with access to large pools of data may adaptively choose what samples to label in the hope of exponentially increasing efficiency. By introducing comparisons, an additional type of query comparing two points, we provide the first time and query efficient algorithms for learning non-homogeneous linear separators robust to bounded (Massart) noise. We further provide algorithms for a generalization of the popular Tsybakov low noise condition, and show how comparisons provide a strong reliability guarantee that is often impractical or impossible with only labels - returning a classifier that makes no errors with high probability.
The Power of Comparisons for Actively Learning Linear Classifiers
Hopkins, Max, Kane, Daniel M., Lovett, Shachar
In recent years, the availability of big data and the high cost of labeling has lead to a surge of interest in active learning, an adaptive, semi-supervised learning paradigm. In traditional active learning, given an instance space X, a distribution D on X, and a class of concepts c: X {0, 1}, the learner receives unlabeled samples x from D with the ability to query an oracle for the labeling c(x). Classically our goal would be to minimize the number of samples the learner draws before approximately learning the concept class with high probability (PAClearning). Instead, active learning assumes unlabeled samples are inexpensive, and rather aims to minimize expensive queries to the oracle. While active learning requires exponentially fewer labeled samples than PAClearning for simple classes such as intervals and thresholds, it fails to provide asymptotic improvement for classes essential to machine learning such as linear separators [1]. However, recent results point to the fact that with slight relaxations or additions to the paradigm, such concept classes can be learned with exponentially fewer queries.