Hoory, Ron
Creating an African American-Sounding TTS: Guidelines, Technical Challenges,and Surprising Evaluations
Pinhanez, Claudio, Fernandez, Raul, Grave, Marcelo, Nogima, Julio, Hoory, Ron
This poses challenges for applications interested in targeting specific demographics (e.g., an African American business or NGO; a voice-tutoring system for children that are not of White ethnicity, etc.). The ultimate goal of the project described in this paper is to provide to designers, developers, and enterprises the choice of having a professional voice which is clearly recognizable as African American, and therefore more able to address diversity and inclusiveness issues. Being more precise, our goal is to create an African American Text-to-Speech system, which we will refer simply as an African American voice or AA voice, able to produce synthetic audio segments from standard English texts, and which will be recognized by African American speakers and non-speakers as sounding like a native African American speaker. The AA voice should exhibit a level of technical quality similar to the Standard American English (SAE) synthetic voices currently available through professional platforms. The evaluation of the technical quality of the AA voice, however, is not addressed in this paper, which focuses primarily on whether the AA voice can be recognized as sounding like an African American speaker. Linguists [27, 28] have described a continuum of dialects under what is often termed African American Vernacular English (AAVE). At one end of the spectrum, one finds the largest deviation from SAE in terms of lexicon (including slang), syntax and morphology, and phonological/phonetic properties. At the other end, AAVE speakers begin to approach SAE in terms of lexicon and grammar but still retain marked speech characteristics (primarily in terms of intonation, phonation, and vowel placement [14, 28]) which grant the speech a distinctive identity which listeners use as cues in the perception of African American English [44].
Speak While You Think: Streaming Speech Synthesis During Text Generation
Dekel, Avihu, Shechtman, Slava, Fernandez, Raul, Haws, David, Kons, Zvi, Hoory, Ron
Large Language Models (LLMs) demonstrate impressive capabilities, yet interaction with these models is mostly facilitated through text. Using Text-To-Speech to synthesize LLM outputs typically results in notable latency, which is impractical for fluent voice conversations. We propose LLM2Speech, an architecture to synthesize speech while text is being generated by an LLM which yields significant latency reduction. LLM2Speech mimics the predictions of a non-streaming teacher model while limiting the exposure to future context in order to enable streaming. It exploits the hidden embeddings of the LLM, a by-product of the text generation that contains informative semantic context. Experimental results show that LLM2Speech maintains the teacher's quality while reducing the latency to enable natural conversations.
Speech Emotion Recognition using Self-Supervised Features
Morais, Edmilson, Hoory, Ron, Zhu, Weizhong, Gat, Itai, Damasceno, Matheus, Aronowitz, Hagai
Self-supervised pre-trained features have consistently delivered state-of-art results in the field of natural language processing (NLP); however, their merits in the field of speech emotion recognition (SER) still need further investigation. In this paper we introduce a modular End-to- End (E2E) SER system based on an Upstream + Downstream architecture paradigm, which allows easy use/integration of a large variety of self-supervised features. Several SER experiments for predicting categorical emotion classes from the IEMOCAP dataset are performed. These experiments investigate interactions among fine-tuning of self-supervised feature models, aggregation of frame-level features into utterance-level features and back-end classification networks. The proposed monomodal speechonly based system not only achieves SOTA results, but also brings light to the possibility of powerful and well finetuned self-supervised acoustic features that reach results similar to the results achieved by SOTA multimodal systems using both Speech and Text modalities.