Holte, Robert Craig
Time Complexity of Iterative-Deepening A*: The Informativeness Pathology (Abstract)
Lelis, Levi (University of Alberta) | Zilles, Sandra (University of Regina) | Holte, Robert Craig (University of Alberta)
Korf, Reid, and Edelkamp launched a line of research aimed at predicting how many nodes IDA* will expand with a given depth bound. This paper advances this line of research in three ways. First, we identify a source of prediction error that has hitherto been overlooked. We call it the "discretization effect." Second, we disprove the intuitively appealing idea that a "more informed" prediction system cannot make worse predictions than a ``less informed'' one. More informed systems are more susceptible to the discretization effect, and in our experiments the more informed system makes poorer predictions. Our third contribution is a method, called "Epsilon-truncation," which makes a prediction system less informed, in a carefully chosen way, so as to improve its predictions by reducing the discretization effect. In our experiments Epsilon-truncation improved predictions substantially.
Block A*: Database-Driven Search with Applications in Any-Angle Path-Planning
Yap, Peter (University of Alberta) | Burch, Neil (University of Alberta) | Holte, Robert Craig (University of Alberta) | Schaeffer, Jonathan (University of Alberta)
We present three new ideas for grid-based path-planning algorithms that improve the search speed and quality of the paths found. First, we introduce a new type of database, the Local Distance Database (LDDB), that contains distances between boundary points of a local neighborhood. Second, an LDDB based algorithm is introduced, called Block A*, that calculates the optimal path between start and goal locations given the local distances stored in the LDDB. Third, our experimental results for any-angle path planning in a wide variety of test domains, including real game maps, show that Block A* is faster than both A* and the previously best grid-based any-angle search algorithm, Theta*.