Goto

Collaborating Authors

 Holte, Robert


The Two-Edged Nature of Diverse Action Costs

AAAI Conferences

Diverse action costs are an essential feature of many real-world planning applications. Some recent studies have shown that diversity of action costs makes planning more difficult, and that searching using unit action costs can outperform searching the same domain with diverse action costs. In this paper, we provide experimental evidence and theoretical analysis showing that search can also benefit from action cost diversity. We show that on several IPC problems cost diversity has a positive effect (reduces search effort). We then present a theoretical analysis establishing that these positive cases are not accidental. Our main result is a "No Free Lunch" theorem showing that any negative effects of cost diversity are always perfectly counterbalanced by positive effects. Our theoretical analysis also shows that it is advantageous to have a strongly concentrated distribution of solution costs. In many domains, unit costs will give rise to a more concentrated distribution than diverse costs, but we give an example typifying domains in which the opposite is the case.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Reports on the 2015 AAAI Workshop Program

AI Magazine

AAAI's 2015 Workshop Program was held Sunday and Monday, January 25–26, 2015 at the Hyatt Regency Austin Hotel in Austion, Texas, USA. The AAAI-15 workshop program included 15 workshops covering a wide range of topics in artificial intelligence. Most workshops were held on a single day. The titles of the workshops included AI and Ethics, AI for Cities, AI for Transportation: Advice, Interactivity and Actor Modeling, Algorithm Configuration, Artificial Intelligence Applied to Assistive Technologies and Smart Environments, Beyond the Turing Test, Computational Sustainability, Computer Poker and Imperfect Information, Incentive and Trust in E-Communities, Multiagent Interaction without Prior Coordination, Planning, Search, and Optimization, Scholarly Big Data: AI Perspectives, Challenges, and Ideas, Trajectory-Based Behaviour Analytics, World Wide Web and Public Health Intelligence, Knowledge, Skill, and Behavior Transfer in Autonomous Robots, and Learning for General Competency in Video Games.


Adding Local Exploration to Greedy Best-First Search in Satisficing Planning

AAAI Conferences

Greedy Best-First Search (GBFS) is a powerful algorithm at the heart of many state of the art satisficing planners. One major weakness of GBFS is its behavior in so-called uninformative heuristic regions (UHRs) - parts of the search space in which no heuristic provides guidance towards states with improved heuristic values. This work analyzes the problem of UHRs in planning in detail, and proposes a two level search framework as a solution. In Greedy Best-First Search with Local Exploration (GBFS-LE), a local exploration is started from within a global GBFS whenever the search seems stuck in UHRs. Two different local exploration strategies are developed and evaluated experimentally: Local GBFS (LS) and Local Random Walk Search (LRW). The two new planners LAMA-LS and LAMA-LRW integrate these strategies into the GBFS component of LAMA-2011. Both are shown to yield clear improvements in terms of both coverage and search time on standard International Planning Competition benchmarks, especially for domains that are proven to have large or un- bounded UHRs.


Type-Based Exploration with Multiple Search Queues for Satisficing Planning

AAAI Conferences

Utilizing multiple queues in Greedy Best-First Search (GBFS) has been proven to be a very effective approach to satisficing planning. Successful techniques include extra queues based on Helpful Actions (or Preferred Operators), as well as using Multiple Heuristics. One weakness of all standard GBFS algorithms is their lack of exploration. All queues used in these methods work as priority queues sorted by heuristic values. Therefore, misleading heuristics, especially early in the search process, can cause the search to become ineffective. Type systems, as introduced for heuristic search by Lelis et al, are a development of ideas for exploration related to the classic stratified sampling approach. The current work introduces a search algorithm that utilizes type systems in a new way – for exploration within a GBFS multiqueue framework in satisficing planning. A careful case study shows the benefits of such exploration for overcoming deficiencies of the heuristic. The proposed new baseline algorithm Type-GBFS solves almost 200 more problems than baseline GBFS over all International Planning Competition problems. Type-LAMA, a new planner which integrates Type-GBFS into LAMA-2011, solves 36.8 more problems than LAMA-2011.


Partial-Expansion A* with Selective Node Generation

AAAI Conferences

A* is often described as being `optimal', in that it expands the minimum number of unique nodes. But, A* may generate many extra nodes which are never expanded. This is a performance loss, especially when the branching factor is large. Partial Expansion A* addresses this problem when expanding a node, n, by generating all the children of n but only storing children with the same f-cost as n. n is re-inserted into the OPEN list, but with the f-cost of the next best child. This paper introduces an enhanced version of PEA* (EPEA*). Given a priori domain knowledge, EPEA* generates only the children with the same f-cost as the parent. EPEA* is generalized to its iterative-deepening variant, EPE-IDA*. For some domains, these algorithms yield substantial performance improvements. State-of-the-art results were obtained for the pancake puzzle and for some multi-agent pathfinding instances. Drawbacks of EPEA* are also discussed.


Using Sliding Windows to Generate Action Abstractions in Extensive-Form Games

AAAI Conferences

In extensive-form games with a large number of actions, careful abstraction of the action space is critically important to performance. In this paper we extend previous work on action abstraction using no-limit poker games as our test domains. We show that in such games it is no longer necessary to choose, a priori, one specific range of possible bet sizes. We introduce an algorithm that adjusts the range of bet sizes considered for each bet individually in an iterative fashion. This flexibility results in a substantially improved game value in no-limit Leduc poker. When applied to no-limit Texas Hold'em our algorithm produces an action abstraction that is about one third the size of a state of the art hand-crafted action abstraction, yet has a better overall game value.


A General Theory of Additive State Space Abstractions

arXiv.org Artificial Intelligence

Informally, a set of abstractions of a state space S is additive if the distance between any two states in S is always greater than or equal to the sum of the corresponding distances in the abstract spaces. The first known additive abstractions, called disjoint pattern databases, were experimentally demonstrated to produce state of the art performance on certain state spaces. However, previous applications were restricted to state spaces with special properties, which precludes disjoint pattern databases from being defined for several commonly used testbeds, such as Rubiks Cube, TopSpin and the Pancake puzzle. In this paper we give a general definition of additive abstractions that can be applied to any state space and prove that heuristics based on additive abstractions are consistent as well as admissible. We use this new definition to create additive abstractions for these testbeds and show experimentally that well chosen additive abstractions can reduce search time substantially for the (18,4)-TopSpin puzzle and by three orders of magnitude over state of the art methods for the 17-Pancake puzzle. We also derive a way of testing if the heuristic value returned by additive abstractions is provably too low and show that the use of this test can reduce search time for the 15-puzzle and TopSpin by roughly a factor of two.


Automated Action Abstraction of Imperfect Information Extensive-Form Games

AAAI Conferences

Multi-agent decision problems can often be formulated as extensive-form games. We focus on imperfect information extensive-form games in which one or more actions at many decision points have an associated continuous or many-valued parameter. A stock trading agent, in addition to deciding whether to buy or not, must decide how much to buy. In no-limit poker, in addition to selecting a probability for each action, the agent must decide how much to bet for each betting action. Selecting values for these parameters makes these games extremely large. Two-player no-limit Texas Hold'em poker with stacks of 500 big blinds has approximately 10 71 states, which is more than 10 50 times more states than two-player limit Texas Hold'em. The main contribution of this paper is a technique that abstracts a game's action space by selecting one, or a small number, of the many values for each parameter. We show that strategies computed using this new algorithm for no-limit Leduc poker exhibit significant utility gains over epsilon-Nash equilibrium strategies computed with standard, hand-crafted parameter value abstractions.


Using Lookaheads with Optimal Best-First Search

AAAI Conferences

We present an algorithm that exploits the complimentary benefits of best-first search (BFS) and depth-first search (DFS) by performing limited DFS lookaheads from the frontier of BFS. We show that this continuum requires significantly less memory than BFS. In addition, a time speedup is also achieved when choosing the lookahead depth correctly. We demonstrate this idea for breadth-first search and for A*. Additionally, we show that when using inconsistent heuristics, Bidirectional Pathmax (BPMX), can be implemented very easily on top of the lookahead phase. Experimental results on several domains demonstrate the benefits of all our ideas.