Goto

Collaborating Authors

 Hofstätter, Sebastian


Rank-without-GPT: Building GPT-Independent Listwise Rerankers on Open-Source Large Language Models

arXiv.org Artificial Intelligence

Listwise rerankers based on large language models (LLM) are the zero-shot state-of-the-art. However, current works in this direction all depend on the GPT models, making it a single point of failure in scientific reproducibility. Moreover, it raises the concern that the current research findings only hold for GPT models but not LLM in general. In this work, we lift this pre-condition and build for the first time effective listwise rerankers without any form of dependency on GPT. Our passage retrieval experiments show that our best list se reranker surpasses the listwise rerankers based on GPT-3.5 by 13% and achieves 97% effectiveness of the ones built on GPT-4. Our results also show that the existing training datasets, which were expressly constructed for pointwise ranking, are insufficient for building such listwise rerankers. Instead, high-quality listwise ranking data is required and crucial, calling for further work on building human-annotated listwise data resources.


Annotating Data for Fine-Tuning a Neural Ranker? Current Active Learning Strategies are not Better than Random Selection

arXiv.org Artificial Intelligence

Search methods based on Pretrained Language Models (PLM) have demonstrated great effectiveness gains compared to statistical and early neural ranking models. However, fine-tuning PLM-based rankers requires a great amount of annotated training data. Annotating data involves a large manual effort and thus is expensive, especially in domain specific tasks. In this paper we investigate fine-tuning PLM-based rankers under limited training data and budget. We investigate two scenarios: fine-tuning a ranker from scratch, and domain adaptation starting with a ranker already fine-tuned on general data, and continuing fine-tuning on a target dataset. We observe a great variability in effectiveness when fine-tuning on different randomly selected subsets of training data. This suggests that it is possible to achieve effectiveness gains by actively selecting a subset of the training data that has the most positive effect on the rankers. This way, it would be possible to fine-tune effective PLM rankers at a reduced annotation budget. To investigate this, we adapt existing Active Learning (AL) strategies to the task of fine-tuning PLM rankers and investigate their effectiveness, also considering annotation and computational costs. Our extensive analysis shows that AL strategies do not significantly outperform random selection of training subsets in terms of effectiveness. We further find that gains provided by AL strategies come at the expense of more assessments (thus higher annotation costs) and AL strategies underperform random selection when comparing effectiveness given a fixed annotation cost. Our results highlight that ``optimal'' subsets of training data that provide high effectiveness at low annotation cost do exist, but current mainstream AL strategies applied to PLM rankers are not capable of identifying them.


Ranger: A Toolkit for Effect-Size Based Multi-Task Evaluation

arXiv.org Artificial Intelligence

In this paper, we introduce Ranger - a toolkit to facilitate the easy use of effect-size-based meta-analysis for multi-task evaluation in NLP and IR. We observed that our communities often face the challenge of aggregating results over incomparable metrics and scenarios, which makes conclusions and take-away messages less reliable. With Ranger, we aim to address this issue by providing a task-agnostic toolkit that combines the effect of a treatment on multiple tasks into one statistical evaluation, allowing for comparison of metrics and computation of an overall summary effect. Our toolkit produces publication-ready forest plots that enable clear communication of evaluation results over multiple tasks. Our goal with the ready-to-use Ranger toolkit is to promote robust, effect-size-based evaluation and improve evaluation standards in the community. We provide two case studies for common IR and NLP settings to highlight Ranger's benefits.


FiD-Light: Efficient and Effective Retrieval-Augmented Text Generation

arXiv.org Artificial Intelligence

Retrieval-augmented generation models offer many benefits over standalone language models: besides a textual answer to a given query they provide provenance items retrieved from an updateable knowledge base. However, they are also more complex systems and need to handle long inputs. In this work, we introduce FiD-Light to strongly increase the efficiency of the state-of-the-art retrieval-augmented FiD model, while maintaining the same level of effectiveness. Our FiD-Light model constrains the information flow from the encoder (which encodes passages separately) to the decoder (using concatenated encoded representations). Furthermore, we adapt FiD-Light with re-ranking capabilities through textual source pointers, to improve the top-ranked provenance precision. Our experiments on a diverse set of seven knowledge intensive tasks (KILT) show FiD-Light consistently improves the Pareto frontier between query latency and effectiveness. FiD-Light with source pointing sets substantial new state-of-the-art results on six KILT tasks for combined text generation and provenance retrieval evaluation, while maintaining reasonable efficiency. Enabling machine learning models to access information contained in parametric or non-parametric storage (i.e., retrieval-enhanced machine learning) can lead to efficiency and/or effectiveness improvements in a wide range of learning tasks (Zamani et al., 2022). For example, retrievalaugmented generation (Lewis et al., 2020), which is the focus of this paper, has a manifold of benefits over closed-loop language modelling in knowledge intensive tasks: Answers can be grounded in (multiple) specific pieces of information which enables clear attribution (Dehghani et al., 2019; Rashkin et al., 2021; Lamm et al., 2021); the knowledge base can easily be managed, updated, and swapped (Izacard et al., 2022); the decomposition of retrieval and generation module offers clear efficiency-effectiveness tradeoff controls; and the data structure of combined retrieval and text generation enables many insightful failure analyses. However, with these benefits also come downsides, such as a higher system complexity with higher training and inference cost.