Goto

Collaborating Authors

 Hoffmann, Norbert


Physics-informed neural networks for phase-resolved data assimilation and prediction of nonlinear ocean waves

arXiv.org Artificial Intelligence

The assimilation and prediction of phase-resolved surface gravity waves are critical challenges in ocean science and engineering. Potential flow theory (PFT) has been widely employed to develop wave models and numerical techniques for wave prediction. However, traditional wave prediction methods are often limited. For example, most simplified wave models have a limited ability to capture strong wave nonlinearity, while fully nonlinear PFT solvers often fail to meet the speed requirements of engineering applications. This computational inefficiency also hinders the development of effective data assimilation techniques, which are required to reconstruct spatial wave information from sparse measurements to initialize the wave prediction. To address these challenges, we propose a novel solver method that leverages physics-informed neural networks (PINNs) that parameterize PFT solutions as neural networks. This provides a computationally inexpensive way to assimilate and predict wave data. The proposed PINN framework is validated through comparisons with analytical linear PFT solutions and experimental data collected in a laboratory wave flume. The results demonstrate that our approach accurately captures and predicts irregular, nonlinear, and dispersive wave surface dynamics. Moreover, the PINN can infer the fully nonlinear velocity potential throughout the entire fluid volume solely from surface elevation measurements, enabling the calculation of fluid velocities that are difficult to measure experimentally.


Data assimilation and parameter identification for water waves using the nonlinear Schr\"{o}dinger equation and physics-informed neural networks

arXiv.org Artificial Intelligence

The measurement of deep water gravity wave elevations using in-situ devices, such as wave gauges, typically yields spatially sparse data. This sparsity arises from the deployment of a limited number of gauges due to their installation effort and high operational costs. The reconstruction of the spatio-temporal extent of surface elevation poses an ill-posed data assimilation problem, challenging to solve with conventional numerical techniques. To address this issue, we propose the application of a physics-informed neural network (PINN), aiming to reconstruct physically consistent wave fields between two designated measurement locations several meters apart. Our method ensures this physical consistency by integrating residuals of the hydrodynamic nonlinear Schr\"{o}dinger equation (NLSE) into the PINN's loss function. Using synthetic wave elevation time series from distinct locations within a wave tank, we initially achieve successful reconstruction quality by employing constant, predetermined NLSE coefficients. However, the reconstruction quality is further improved by introducing NLSE coefficients as additional identifiable variables during PINN training. The results not only showcase a technically relevant application of the PINN method but also represent a pioneering step towards improving the initialization of deterministic wave prediction methods.


Machine learning for phase-resolved reconstruction of nonlinear ocean wave surface elevations from sparse remote sensing data

arXiv.org Artificial Intelligence

Accurate short-term predictions of phase-resolved water wave conditions are crucial for decision-making in ocean engineering. However, the initialization of remote-sensing-based wave prediction models first requires a reconstruction of wave surfaces from sparse measurements like radar. Existing reconstruction methods either rely on computationally intensive optimization procedures or simplistic modelling assumptions that compromise the real-time capability or accuracy of the subsequent prediction process. We therefore address these issues by proposing a novel approach for phase-resolved wave surface reconstruction using neural networks based on the U-Net and Fourier neural operator (FNO) architectures. Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids, that is generated by the high-order spectral method for wave simulation and a geometric radar modelling approach. The investigation reveals that both models deliver accurate wave reconstruction results and show good generalization for different sea states when trained with spatio-temporal radar data containing multiple historic radar snapshots in each input. Notably, the FNO demonstrates superior performance in handling the data structure imposed by wave physics due to its global approach to learn the mapping between input and output in Fourier space.