Goto

Collaborating Authors

 Hoefler, Torsten


Reasoning Language Models: A Blueprint

arXiv.org Artificial Intelligence

Reasoning language models (RLMs), also known as Large Reasoning Models (LRMs), such as OpenAI's o1 and o3, DeepSeek-V3, and Alibaba's QwQ, have redefined AI's problem-solving capabilities by extending LLMs with advanced reasoning mechanisms. Yet, their high costs, proprietary nature, and complex architectures - uniquely combining Reinforcement Learning (RL), search heuristics, and LLMs - present accessibility and scalability challenges. To address these, we propose a comprehensive blueprint that organizes RLM components into a modular framework, based on a survey and analysis of all RLM works. This blueprint incorporates diverse reasoning structures (chains, trees, graphs, and nested forms), reasoning strategies (e.g., Monte Carlo Tree Search, Beam Search), RL concepts (policy, value models and others), supervision schemes (Outcome-Based and Process-Based Supervision), and other related concepts (e.g., Test-Time Compute, Retrieval-Augmented Generation, agent tools). We also provide detailed mathematical formulations and algorithmic specifications to simplify RLM implementation. By showing how schemes like LLaMA-Berry, QwQ, Journey Learning, and Graph of Thoughts fit as special cases, we demonstrate the blueprint's versatility and unifying potential. To illustrate its utility, we introduce x1, a modular implementation for rapid RLM prototyping and experimentation. Using x1 and a literature review, we provide key insights, such as multi-phase training for policy and value models, and the importance of familiar training distributions. Finally, we discuss scalable RLM cloud deployments and we outline how RLMs can integrate with a broader LLM ecosystem. Our work demystifies RLM construction, democratizes advanced reasoning capabilities, and fosters innovation, aiming to mitigate the gap between "rich AI" and "poor AI" by lowering barriers to RLM design and experimentation.


HALO: Hadamard-Assisted Lossless Optimization for Efficient Low-Precision LLM Training and Fine-Tuning

arXiv.org Artificial Intelligence

Quantized training of Large Language Models (LLMs) remains an open challenge, as maintaining accuracy while performing all matrix multiplications in low precision has proven difficult. This is particularly the case when fine-tuning pre-trained models, which often already have large weight and activation outlier values that render quantized optimization difficult. We present HALO, a novel quantization-aware training approach for Transformers that enables accurate and efficient low-precision training by combining 1) strategic placement of Hadamard rotations in both forward and backward passes, to mitigate outliers during the low-precision computation, 2) FSDP integration for low-precision communication, and 3) high-performance kernel support. Our approach ensures that all large matrix multiplications during the forward and backward passes are executed in lower precision. Applied to LLAMA-family models, HALO achieves near-full-precision-equivalent results during fine-tuning on various tasks, while delivering up to 1.31x end-to-end speedup for full fine-tuning on RTX 4090 GPUs. Our method supports both standard and parameter-efficient fine-tuning (PEFT) methods, both backed by efficient kernel implementations. Our results demonstrate the first practical approach to fully quantized LLM fine-tuning that maintains accuracy in FP8 precision, while delivering performance benefits.


EfQAT: An Efficient Framework for Quantization-Aware Training

arXiv.org Artificial Intelligence

Quantization-aware training (QAT) schemes have been shown to achieve near-full precision accuracy. They accomplish this by training a quantized model for multiple epochs. This is computationally expensive, mainly because of the full precision backward pass. On the other hand, post-training quantization (PTQ) schemes do not involve training and are therefore computationally cheap, but they usually result in a significant accuracy drop. We address these challenges by proposing EfQAT, which generalizes both schemes by optimizing only a subset of the parameters of a quantized model. EfQAT starts by applying a PTQ scheme to a pre-trained model and only updates the most critical network parameters while freezing the rest, accelerating the backward pass. We demonstrate the effectiveness of EfQAT on various CNNs and Transformer-based models using different GPUs. Specifically, we show that EfQAT is significantly more accurate than PTQ with little extra compute. Furthermore, EfQAT can accelerate the QAT backward pass between 1.44-1.64x while retaining most accuracy.


All models are wrong, some are useful: Model Selection with Limited Labels

arXiv.org Artificial Intelligence

We introduce MODEL SELECTOR, a framework for label-efficient selection of pretrained classifiers. Given a pool of unlabeled target data, MODEL SELECTOR samples a small subset of highly informative examples for labeling, in order to efficiently identify the best pretrained model for deployment on this target dataset. Through extensive experiments, we demonstrate that MODEL SELECTOR drastically reduces the need for labeled data while consistently picking the best or near-best performing model. Across 18 model collections on 16 different datasets, comprising over 1,500 pretrained models, MODEL SELECTOR reduces the labeling cost by up to 94.15% to identify the best model compared to the cost of the strongest baseline. Our results further highlight the robustness of MODEL SELECTOR in model selection, as it reduces the labeling cost by up to 72.41% when selecting a near-best model, whose accuracy is only within 1% of the best model.


Fortify Your Foundations: Practical Privacy and Security for Foundation Model Deployments In The Cloud

arXiv.org Artificial Intelligence

Foundation Models (FMs) display exceptional performance in tasks such as natural language processing and are being applied across a growing range of disciplines. Although typically trained on large public datasets, FMs are often fine-tuned or integrated into Retrieval-Augmented Generation (RAG) systems, which rely on private data. This access, along with their size and costly training, heightens the risk of intellectual property theft. Moreover, multimodal FMs may expose sensitive information. In this work, we examine the FM threat model and discuss the practicality and comprehensiveness of various approaches for securing against them, such as ML-based methods and trusted execution environments (TEEs). We demonstrate that TEEs offer an effective balance between strong security properties, usability, and performance. Specifically, we present a solution achieving less than 10\% overhead versus bare metal for the full Llama2 7B and 13B inference pipelines running inside \intel\ SGX and \intel\ TDX. We also share our configuration files and insights from our implementation. To our knowledge, our work is the first to show the practicality of TEEs for securing FMs.


Demystifying Higher-Order Graph Neural Networks

arXiv.org Artificial Intelligence

Higher-order graph neural networks (HOGNNs) are an important class of GNN models that harness polyadic relations between vertices beyond plain edges. They have been used to eliminate issues such as over-smoothing or over-squashing, to significantly enhance the accuracy of GNN predictions, to improve the expressiveness of GNN architectures, and for numerous other goals. A plethora of HOGNN models have been introduced, and they come with diverse neural architectures, and even with different notions of what the "higher-order" means. This richness makes it very challenging to appropriately analyze and compare HOGNN models, and to decide in what scenario to use specific ones. To alleviate this, we first design an in-depth taxonomy and a blueprint for HOGNNs. This facilitates designing models that maximize performance. Then, we use our taxonomy to analyze and compare the available HOGNN models. The outcomes of our analysis are synthesized in a set of insights that help to select the most beneficial GNN model in a given scenario, and a comprehensive list of challenges and opportunities for further research into more powerful HOGNNs.


CheckEmbed: Effective Verification of LLM Solutions to Open-Ended Tasks

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are revolutionizing various domains, yet verifying their answers remains a significant challenge, especially for intricate open-ended tasks such as consolidation, summarization, and extraction of knowledge. In this work, we propose CheckEmbed: an accurate, scalable, and simple LLM verification approach. CheckEmbed is driven by a straightforward yet powerful idea: in order to compare LLM solutions to one another or to the ground-truth, compare their corresponding answer-level embeddings obtained with a model such as GPT Text Embedding Large. This reduces a complex textual answer to a single embedding, facilitating straightforward, fast, and meaningful verification. We develop a comprehensive verification pipeline implementing the CheckEmbed methodology. The CheckEmbed pipeline also comes with metrics for assessing the truthfulness of the LLM answers, such as embedding heatmaps and their summaries. We show how to use these metrics for deploying practical engines that decide whether an LLM answer is satisfactory or not. We apply the pipeline to real-world document analysis tasks, including term extraction and document summarization, showcasing significant improvements in accuracy, cost-effectiveness, and runtime performance compared to existing token-, sentence-, and fact-level schemes such as BERTScore or SelfCheckGPT.


Multi-Head RAG: Solving Multi-Aspect Problems with LLMs

arXiv.org Artificial Intelligence

Retrieval Augmented Generation (RAG) enhances the abilities of Large Language Models (LLMs) by enabling the retrieval of documents into the LLM context to provide more accurate and relevant responses. Existing RAG solutions do not focus on queries that may require fetching multiple documents with substantially different contents. Such queries occur frequently, but are challenging because the embeddings of these documents may be distant in the embedding space, making it hard to retrieve them all. This paper introduces Multi-Head RAG (MRAG), a novel scheme designed to address this gap with a simple yet powerful idea: leveraging activations of Transformer's multi-head attention layer, instead of the decoder layer, as keys for fetching multi-aspect documents. The driving motivation is that different attention heads can learn to capture different data aspects. Harnessing the corresponding activations results in embeddings that represent various facets of data items and queries, improving the retrieval accuracy for complex queries. We provide an evaluation methodology and metrics, synthetic datasets, and real-world use cases to demonstrate MRAG's effectiveness, showing improvements of up to 20% in relevance over standard RAG baselines. MRAG can be seamlessly integrated with existing RAG frameworks and benchmarking tools like RAGAS as well as different classes of data stores.


QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs

arXiv.org Artificial Intelligence

We introduce QuaRot, a new Quantization scheme based on Rotations, which is able to quantize LLMs end-to-end, including all weights, activations, and KV cache in 4 bits. QuaRot rotates LLMs in a way that removes outliers from the hidden state without changing the output, making quantization easier. This computational invariance is applied to the hidden state (residual) of the LLM, as well as to the activations of the feed-forward components, aspects of the attention mechanism and to the KV cache. The result is a quantized model where all matrix multiplications are performed in 4-bits, without any channels identified for retention in higher precision. Our quantized LLaMa2-70B model has losses of at most 0.29 WikiText-2 perplexity and retains 99% of the zero-shot performance. Code is available at: https://github.com/spcl/QuaRot.


SliceGPT: Compress Large Language Models by Deleting Rows and Columns

arXiv.org Artificial Intelligence

Large language models have become the cornerstone of natural language processing, but their use comes with substantial costs in terms of compute and memory resources. Sparsification provides a solution to alleviate these resource constraints, and recent works have shown that trained models can be sparsified post-hoc. Existing sparsification techniques face challenges as they need additional data structures and offer constrained speedup with current hardware. In this paper we present SliceGPT, a new post-training sparsification scheme which replaces each weight matrix with a smaller (dense) matrix, reducing the embedding dimension of the network. We offer a new insight, computational invariance in transformer networks, which enables SliceGPT and we hope it will inspire and enable future avenues to reduce memory and computation demands for pre-trained models. Large language models (LLMs) are neural networks with billions of parameters, trained on trillions of tokens (Zhao et al., 2023). The cost of training an LLM has caused a shift to re-using pre-trained models for multiple tasks, the foundation model paradigm. The size of LLMs makes deploying a pre-trained model an expensive undertaking. Many models require multiple GPUs to be able to compute a prediction, and because the models are autoregressive, multiple forward passes of the neural network are needed to generate text responses.