Hilsmann, Anna
Multi-Resolution Generative Modeling of Human Motion from Limited Data
Moreno-Villamarín, David Eduardo, Hilsmann, Anna, Eisert, Peter
We present a generative model that learns to synthesize human motion from limited training sequences. Our framework provides conditional generation and blending across multiple temporal resolutions. The model adeptly captures human motion patterns by integrating skeletal convolution layers and a multi-scale architecture. Our model contains a set of generative and adversarial networks, along with embedding modules, each tailored for generating motions at specific frame rates while exerting control over their content and details. Notably, our approach also extends to the synthesis of co-speech gestures, demonstrating its ability to generate synchronized gestures from speech inputs, even with limited paired data. Through direct synthesis of SMPL pose parameters, our approach avoids test-time adjustments to fit human body meshes. Experimental results showcase our model's ability to achieve extensive coverage of training examples, while generating diverse motions, as indicated by local and global diversity metrics.
EEG-Features for Generalized Deepfake Detection
Beckmann, Arian, Stephani, Tilman, Klotzsche, Felix, Chen, Yonghao, Hofmann, Simon M., Villringer, Arno, Gaebler, Michael, Nikulin, Vadim, Bosse, Sebastian, Eisert, Peter, Hilsmann, Anna
Since the advent of Deepfakes in digital media, the development of robust and reliable detection mechanism is urgently called for. In this study, we explore a novel approach to Deepfake detection by utilizing electroencephalography (EEG) measured from the neural processing of a human participant who viewed and categorized Deepfake stimuli from the FaceForensics++ datset. These measurements serve as input features to a binary support vector classifier, trained to discriminate between real and manipulated facial images. We examine whether EEG data can inform Deepfake detection and also if it can provide a generalized representation capable of identifying Deepfakes beyond the training domain. Our preliminary results indicate that human neural processing signals can be successfully integrated into Deepfake detection frameworks and hint at the potential for a generalized neural representation of artifacts in computer generated faces. Moreover, our study provides next steps towards the understanding of how digital realism is embedded in the human cognitive system, possibly enabling the development of more realistic digital avatars in the future.
Unsupervised Learning of Style-Aware Facial Animation from Real Acting Performances
Paier, Wolfgang, Hilsmann, Anna, Eisert, Peter
This paper presents a novel approach for text/speech-driven animation of a photo-realistic head model based on blend-shape geometry, dynamic textures, and neural rendering. Training a VAE for geometry and texture yields a parametric model for accurate capturing and realistic synthesis of facial expressions from a latent feature vector. Our animation method is based on a conditional CNN that transforms text or speech into a sequence of animation parameters. In contrast to previous approaches, our animation model learns disentangling/synthesizing different acting-styles in an unsupervised manner, requiring only phonetic labels that describe the content of training sequences. For realistic real-time rendering, we train a U-Net that refines rasterization-based renderings by computing improved pixel colors and a foreground matte. We compare our framework qualitatively/quantitatively against recent methods for head modeling as well as facial animation and evaluate the perceived rendering/animation quality in a user-study, which indicates large improvements compared to state-of-the-art approaches
Hyperspectral Demosaicing of Snapshot Camera Images Using Deep Learning
Wisotzky, Eric L., Daudkhane, Charul, Hilsmann, Anna, Eisert, Peter
Spectral imaging technologies have rapidly evolved during the past decades. The recent development of single-camera-one-shot techniques for hyperspectral imaging allows multiple spectral bands to be captured simultaneously (3x3, 4x4 or 5x5 mosaic), opening up a wide range of applications. Examples include intraoperative imaging, agricultural field inspection and food quality assessment. To capture images across a wide spectrum range, i.e. to achieve high spectral resolution, the sensor design sacrifices spatial resolution. With increasing mosaic size, this effect becomes increasingly detrimental. Furthermore, demosaicing is challenging. Without incorporating edge, shape, and object information during interpolation, chromatic artifacts are likely to appear in the obtained images. Recent approaches use neural networks for demosaicing, enabling direct information extraction from image data. However, obtaining training data for these approaches poses a challenge as well. This work proposes a parallel neural network based demosaicing procedure trained on a new ground truth dataset captured in a controlled environment by a hyperspectral snapshot camera with a 4x4 mosaic pattern. The dataset is a combination of real captured scenes with images from publicly available data adapted to the 4x4 mosaic pattern. To obtain real world ground-truth data, we performed multiple camera captures with 1-pixel shifts in order to compose the entire data cube. Experiments show that the proposed network outperforms state-of-art networks.
Perfusion assessment via local remote photoplethysmography (rPPG)
Kossack, Benjamin, Wisotzky, Eric, Eisert, Peter, Schraven, Sebastian P., Globke, Brigitta, Hilsmann, Anna
This paper presents an approach to assess the perfusion of visible human tissue from RGB video files. We propose metrics derived from remote photoplethysmography (rPPG) signals to detect whether a tissue is adequately supplied with blood. The perfusion analysis is done in three different scales, offering a flexible approach for different applications. We perform a plane-orthogonal-to-skin rPPG independently for locally defined regions of interest on each scale. From the extracted signals, we derive the signal-to-noise ratio, magnitude in the frequency domain, heart rate, perfusion index as well as correlation between specific rPPG signals in order to locally assess the perfusion of a specific region of human tissue. We show that locally resolved rPPG has a broad range of applications. As exemplary applications, we present results in intraoperative perfusion analysis and visualization during skin and organ transplantation as well as an application for liveliness assessment for the detection of presentation attacks to authentication systems.
Accurate and Robust Neural Networks for Security Related Applications Exampled by Face Morphing Attacks
Seibold, Clemens, Samek, Wojciech, Hilsmann, Anna, Eisert, Peter
Artificial neural networks tend to learn only what they need for a task. A manipulation of the training data can counter this phenomenon. In this paper, we study the effect of different alterations of the training data, which limit the amount and position of information that is available for the decision making. We analyze the accuracy and robustness against semantic and black box attacks on the networks that were trained on different training data modifications for the particular example of morphing attacks. A morphing attack is an attack on a biometric facial recognition system where the system is fooled to match two different individuals with the same synthetic face image. Such a synthetic image can be created by aligning and blending images of the two individuals that should be matched with this image.