Goto

Collaborating Authors

 Hengartner, Urs


Unlocking The Potential of Adaptive Attacks on Diffusion-Based Purification

arXiv.org Artificial Intelligence

Diffusion-based purification (DBP) is a defense against adversarial examples (AEs), amassing popularity for its ability to protect classifiers in an attack-oblivious manner and resistance to strong adversaries with access to the defense. Its robustness has been claimed to ensue from the reliance on diffusion models (DMs) that project the AEs onto the natural distribution. We revisit this claim, focusing on gradient-based strategies that back-propagate the loss gradients through the defense, commonly referred to as ``adaptive attacks". Analytically, we show that such an optimization method invalidates DBP's core foundations, effectively targeting the DM rather than the classifier and restricting the purified outputs to a distribution over malicious samples instead. Thus, we reassess the reported empirical robustness, uncovering implementation flaws in the gradient back-propagation techniques used thus far for DBP. We fix these issues, providing the first reliable gradient library for DBP and demonstrating how adaptive attacks drastically degrade its robustness. We then study a less efficient yet stricter majority-vote setting where the classifier evaluates multiple purified copies of the input to make its decision. Here, DBP's stochasticity enables it to remain partially robust against traditional norm-bounded AEs. We propose a novel adaptation of a recent optimization method against deepfake watermarking that crafts systemic malicious perturbations while ensuring imperceptibility. When integrated with the adaptive attack, it completely defeats DBP, even in the majority-vote setup. Our findings prove that DBP, in its current state, is not a viable defense against AEs.


UnMarker: A Universal Attack on Defensive Watermarking

arXiv.org Artificial Intelligence

Reports regarding the misuse of $\textit{Generative AI}$ ($\textit{GenAI}$) to create harmful deepfakes are emerging daily. Recently, defensive watermarking, which enables $\textit{GenAI}$ providers to hide fingerprints in their images to later use for deepfake detection, has been on the rise. Yet, its potential has not been fully explored. We present $\textit{UnMarker}$ -- the first practical $\textit{universal}$ attack on defensive watermarking. Unlike existing attacks, $\textit{UnMarker}$ requires no detector feedback, no unrealistic knowledge of the scheme or similar models, and no advanced denoising pipelines that may not be available. Instead, being the product of an in-depth analysis of the watermarking paradigm revealing that robust schemes must construct their watermarks in the spectral amplitudes, $\textit{UnMarker}$ employs two novel adversarial optimizations to disrupt the spectra of watermarked images, erasing the watermarks. Evaluations against the $\textit{SOTA}$ prove its effectiveness, not only defeating traditional schemes while retaining superior quality compared to existing attacks but also breaking $\textit{semantic}$ watermarks that alter the image's structure, reducing the best detection rate to $43\%$ and rendering them useless. To our knowledge, $\textit{UnMarker}$ is the first practical attack on $\textit{semantic}$ watermarks, which have been deemed the future of robust watermarking. $\textit{UnMarker}$ casts doubts on the very penitential of this countermeasure and exposes its paradoxical nature as designing schemes for robustness inevitably compromises other robustness aspects.


On the Feasibility of Fingerprinting Collaborative Robot Traffic

arXiv.org Artificial Intelligence

This study examines privacy risks in collaborative robotics, focusing on the potential for traffic analysis in encrypted robot communications. While previous research has explored low-level command recovery, our work investigates high-level motion recovery from command message sequences. We evaluate the efficacy of traditional website fingerprinting techniques (k-FP, KNN, and CUMUL) and their limitations in accurately identifying robotic actions due to their inability to capture detailed temporal relationships. To address this, we introduce a traffic classification approach using signal processing techniques, demonstrating high accuracy in action identification and highlighting the vulnerability of encrypted communications to privacy breaches. Additionally, we explore defenses such as packet padding and timing manipulation, revealing the challenges in balancing traffic analysis resistance with network efficiency. Our findings emphasize the need for continued development of practical defenses in robotic privacy and security.


Investigating Membership Inference Attacks under Data Dependencies

arXiv.org Artificial Intelligence

Training machine learning models on privacy-sensitive data has become a popular practice, driving innovation in ever-expanding fields. This has opened the door to new attacks that can have serious privacy implications. One such attack, the Membership Inference Attack (MIA), exposes whether or not a particular data point was used to train a model. A growing body of literature uses Differentially Private (DP) training algorithms as a defence against such attacks. However, these works evaluate the defence under the restrictive assumption that all members of the training set, as well as non-members, are independent and identically distributed. This assumption does not hold for many real-world use cases in the literature. Motivated by this, we evaluate membership inference with statistical dependencies among samples and explain why DP does not provide meaningful protection (the privacy parameter $\epsilon$ scales with the training set size $n$) in this more general case. We conduct a series of empirical evaluations with off-the-shelf MIAs using training sets built from real-world data showing different types of dependencies among samples. Our results reveal that training set dependencies can severely increase the performance of MIAs, and therefore assuming that data samples are statistically independent can significantly underestimate the performance of MIAs.