Hemmat, Reyhane Askari
Improving Geo-diversity of Generated Images with Contextualized Vendi Score Guidance
Hemmat, Reyhane Askari, Hall, Melissa, Sun, Alicia, Ross, Candace, Drozdzal, Michal, Romero-Soriano, Adriana
With the growing popularity of text-to-image generative models, there has been increasing focus on understanding their risks and biases. Recent work has found that state-of-the-art models struggle to depict everyday objects with the true diversity of the real world and have notable gaps between geographic regions. In this work, we aim to increase the diversity of generated images of common objects such that per-region variations are representative of the real world. We introduce an inference time intervention, contextualized Vendi Score Guidance (c-VSG), that guides the backwards steps of latent diffusion models to increase the diversity of a sample as compared to a "memory bank" of previously generated images while constraining the amount of variation within that of an exemplar set of real-world contextualizing images. We evaluate c-VSG with two geographically representative datasets and find that it substantially increases the diversity of generated images, both for the worst performing regions and on average, while simultaneously maintaining or improving image quality and consistency. Additionally, qualitative analyses reveal that diversity of generated images is significantly improved, including along the lines of reductive region portrayals present in the original model. We hope that this work is a step towards text-to-image generative models that reflect the true geographic diversity of the world.
An Introduction to Vision-Language Modeling
Bordes, Florian, Pang, Richard Yuanzhe, Ajay, Anurag, Li, Alexander C., Bardes, Adrien, Petryk, Suzanne, Maรฑas, Oscar, Lin, Zhiqiu, Mahmoud, Anas, Jayaraman, Bargav, Ibrahim, Mark, Hall, Melissa, Xiong, Yunyang, Lebensold, Jonathan, Ross, Candace, Jayakumar, Srihari, Guo, Chuan, Bouchacourt, Diane, Al-Tahan, Haider, Padthe, Karthik, Sharma, Vasu, Xu, Hu, Tan, Xiaoqing Ellen, Richards, Megan, Lavoie, Samuel, Astolfi, Pietro, Hemmat, Reyhane Askari, Chen, Jun, Tirumala, Kushal, Assouel, Rim, Moayeri, Mazda, Talattof, Arjang, Chaudhuri, Kamalika, Liu, Zechun, Chen, Xilun, Garrido, Quentin, Ullrich, Karen, Agrawal, Aishwarya, Saenko, Kate, Celikyilmaz, Asli, Chandra, Vikas
Following the recent popularity of Large Language Models (LLMs), several attempts have been made to extend them to the visual domain. From having a visual assistant that could guide us through unfamiliar environments to generative models that produce images using only a high-level text description, the vision-language model (VLM) applications will significantly impact our relationship with technology. However, there are many challenges that need to be addressed to improve the reliability of those models. While language is discrete, vision evolves in a much higher dimensional space in which concepts cannot always be easily discretized. To better understand the mechanics behind mapping vision to language, we present this introduction to VLMs which we hope will help anyone who would like to enter the field. First, we introduce what VLMs are, how they work, and how to train them. Then, we present and discuss approaches to evaluate VLMs. Although this work primarily focuses on mapping images to language, we also discuss extending VLMs to videos.
QGen: On the Ability to Generalize in Quantization Aware Training
AskariHemmat, MohammadHossein, Jeddi, Ahmadreza, Hemmat, Reyhane Askari, Lazarevich, Ivan, Hoffman, Alexander, Sah, Sudhakar, Saboori, Ehsan, Savaria, Yvon, David, Jean-Pierre
Quantization lowers memory usage, computational requirements, and latency by utilizing fewer bits to represent model weights and activations. In this work, we investigate the generalization properties of quantized neural networks, a characteristic that has received little attention despite its implications on model performance. In particular, first, we develop a theoretical model for quantization in neural networks and demonstrate how quantization functions as a form of regularization. Second, motivated by recent work connecting the sharpness of the loss landscape and generalization, we derive an approximate bound for the generalization of quantized models conditioned on the amount of quantization noise. We then validate our hypothesis by experimenting with over 2000 models trained on CIFAR-10, CIFAR-100, and ImageNet datasets on convolutional and transformer-based models.
Feedback-guided Data Synthesis for Imbalanced Classification
Hemmat, Reyhane Askari, Pezeshki, Mohammad, Bordes, Florian, Drozdzal, Michal, Romero-Soriano, Adriana
Current status quo in machine learning is to use static datasets of real images for training, which often come from long-tailed distributions. With the recent advances in generative models, researchers have started augmenting these static datasets with synthetic data, reporting moderate performance improvements on classification tasks. We hypothesize that these performance gains are limited by the lack of feedback from the classifier to the generative model, which would promote the usefulness of the generated samples to improve the classifier's performance. In this work, we introduce a framework for augmenting static datasets with useful synthetic samples, which leverages one-shot feedback from the classifier to drive the sampling of the generative model. In order for the framework to be effective, we find that the samples must be close to the support of the real data of the task at hand, and be sufficiently diverse. We validate three feedback criteria on a long-tailed dataset (ImageNet-LT) as well as a group-imbalanced dataset (NICO++). On ImageNet-LT, we achieve state-of-the-art results, with over 4 percent improvement on underrepresented classes while being twice efficient in terms of the number of generated synthetic samples. NICO++ also enjoys marked boosts of over 5 percent in worst group accuracy. With these results, our framework paves the path towards effectively leveraging state-of-the-art text-to-image models as data sources that can be queried to improve downstream applications.
LEAD: Min-Max Optimization from a Physical Perspective
Hemmat, Reyhane Askari, Mitra, Amartya, Lajoie, Guillaume, Mitliagkas, Ioannis
Adversarial formulations such as generative adversarial networks (GANs) have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the rotational dynamics that hinder their convergence. In this paper, we show that game optimization shares dynamic properties with particle systems subject to multiple forces, and one can leverage tools from physics to improve optimization dynamics. Inspired by the physical framework, we propose LEAD, an optimizer for min-max games. Next, using Lyapunov stability theory and spectral analysis, we study LEAD's convergence properties in continuous and discrete time settings for a class of quadratic min-max games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements in GAN training.
Negative Momentum for Improved Game Dynamics
Gidel, Gauthier, Hemmat, Reyhane Askari, Pezeshki, Mohammad, Huang, Gabriel, Lepriol, Remi, Lacoste-Julien, Simon, Mitliagkas, Ioannis
Games generalize the optimization paradigm by introducing different objective functions for different optimizing agents, known as players. Generative Adversarial Networks (GANs) are arguably the most popular game formulation in recent machine learning literature. GANs achieve great results on generating realistic natural images, however they are known for being difficult to train. Training them involves finding a Nash equilibrium, typically performed using gradient descent on the two players' objectives. Game dynamics can induce rotations that slow down convergence to a Nash equilibrium, or prevent it altogether. We provide a theoretical analysis of the game dynamics. Our analysis, supported by experiments, shows that gradient descent with a negative momentum term can improve the convergence properties of some GANs.