Healey, Elizabeth
Machine Learning for Health symposium 2024 -- Findings track
Hegselmann, Stefan, Zhou, Helen, Healey, Elizabeth, Chang, Trenton, Ellington, Caleb, Mhasawade, Vishwali, Tonekaboni, Sana, Argaw, Peniel, Zhang, Haoran
A collection of the accepted Findings papers that were presented at the 4th Machine Learning for Health symposium (ML4H 2024), which was held on December 15-16, 2024, in Vancouver, BC, Canada. ML4H 2024 invited high-quality submissions describing innovative research in a variety of health-related disciplines including healthcare, biomedicine, and public health. Works could be submitted to either the archival Proceedings track, or the non-archival Findings track. The Proceedings track targeted mature, cohesive works with technical sophistication and high-impact relevance to health. The Findings track promoted works that would spark new insights, collaborations, and discussions at ML4H. Both tracks were given the opportunity to share their work through the in-person poster session. All the manuscripts submitted to ML4H Symposium underwent a double-blind peer-review process.
Recent Advances, Applications and Open Challenges in Machine Learning for Health: Reflections from Research Roundtables at ML4H 2024 Symposium
Adibi, Amin, Cao, Xu, Ji, Zongliang, Kaur, Jivat Neet, Chen, Winston, Healey, Elizabeth, Nuwagira, Brighton, Ye, Wenqian, Woollard, Geoffrey, Xu, Maxwell A, Cui, Hejie, Xi, Johnny, Chang, Trenton, Bikia, Vasiliki, Zhang, Nicole, Noori, Ayush, Xia, Yuan, Hossain, Md. Belal, Frank, Hanna A., Peluso, Alina, Pu, Yuan, Shen, Shannon Zejiang, Wu, John, Fallahpour, Adibvafa, Mahbub, Sazan, Duncan, Ross, Zhang, Yuwei, Cao, Yurui, Xu, Zuheng, Craig, Michael, Krishnan, Rahul G., Beheshti, Rahmatollah, Rehg, James M., Karim, Mohammad Ehsanul, Coffee, Megan, Celi, Leo Anthony, Fries, Jason Alan, Sadatsafavi, Mohsen, Shung, Dennis, McWeeney, Shannon, Dafflon, Jessica, Jabbour, Sarah
The fourth Machine Learning for Health (ML4H) symposium was held in person on December 15th and 16th, 2024, in the traditional, ancestral, and unceded territories of the Musqueam, Squamish, and Tsleil-Waututh Nations in Vancouver, British Columbia, Canada. The symposium included research roundtable sessions to foster discussions between participants and senior researchers on timely and relevant topics for the ML4H community. The organization of the research roundtables at the conference involved 13 senior and 27 junior chairs across 13 tables. Each roundtable session included an invited senior chair (with substantial experience in the field), junior chairs (responsible for facilitating the discussion), and attendees from diverse backgrounds with an interest in the session's topic.
Identifying Heterogeneous Treatment Effects in Multiple Outcomes using Joint Confidence Intervals
Argaw, Peniel N., Healey, Elizabeth, Kohane, Isaac S.
Heterogeneous treatment effects (HTEs) are commonly identified during randomized controlled trials (RCTs). Identifying subgroups of patients with similar treatment effects is of high interest in clinical research to advance precision medicine. Often, multiple clinical outcomes are measured during an RCT, each having a potentially heterogeneous effect. Recently there has been high interest in identifying subgroups from HTEs, however, there has been less focus on developing tools in settings where there are multiple outcomes. In this work, we propose a framework for partitioning the covariate space to identify subgroups across multiple outcomes based on the joint CIs. We test our algorithm on synthetic and semi-synthetic data where there are two outcomes, and demonstrate that our algorithm is able to capture the HTE in both outcomes simultaneously.