Goto

Collaborating Authors

 He, Yingqing


ModelGrow: Continual Text-to-Video Pre-training with Model Expansion and Language Understanding Enhancement

arXiv.org Artificial Intelligence

Text-to-video (T2V) generation has gained significant attention recently. However, the costs of training a T2V model from scratch remain persistently high, and there is considerable room for improving the generation performance, especially under limited computation resources. This work explores the continual general pre-training of text-to-video models, enabling the model to "grow" its abilities based on a pre-trained foundation, analogous to how humans acquire new knowledge based on past experiences. There is a lack of extensive study of the continual pre-training techniques in T2V generation. In this work, we take the initial step toward exploring this task systematically and propose ModelGrow. Specifically, we break this task into two key aspects: increasing model capacity and improving semantic understanding. For model capacity, we introduce several novel techniques to expand the model size, enabling it to store new knowledge and improve generation performance. For semantic understanding, we propose a method that leverages large language models as advanced text encoders, integrating them into T2V models to enhance language comprehension and guide generation results according to detailed prompts. This approach enables the model to achieve better semantic alignment, particularly in response to complex user prompts. Extensive experiments demonstrate the effectiveness of our method across various metrics. The source code and the model of ModelGrow will be publicly available.


VideoDPO: Omni-Preference Alignment for Video Diffusion Generation

arXiv.org Artificial Intelligence

Recent progress in generative diffusion models has greatly advanced text-to-video generation. While text-to-video models trained on large-scale, diverse datasets can produce varied outputs, these generations often deviate from user preferences, highlighting the need for preference alignment on pre-trained models. Although Direct Preference Optimization (DPO) has demonstrated significant improvements in language and image generation, we pioneer its adaptation to video diffusion models and propose a VideoDPO pipeline by making several key adjustments. Unlike previous image alignment methods that focus solely on either (i) visual quality or (ii) semantic alignment between text and videos, we comprehensively consider both dimensions and construct a preference score accordingly, which we term the OmniScore. We design a pipeline to automatically collect preference pair data based on the proposed OmniScore and discover that re-weighting these pairs based on the score significantly impacts overall preference alignment. Our experiments demonstrate substantial improvements in both visual quality and semantic alignment, ensuring that no preference aspect is neglected. Code and data will be shared at https://videodpo.github.io/.


LLMs Meet Multimodal Generation and Editing: A Survey

arXiv.org Artificial Intelligence

With the recent advancement in large language models (LLMs), there is a growing interest in combining LLMs with multimodal learning. Previous surveys of multimodal large language models (MLLMs) mainly focus on multimodal understanding. This survey elaborates on multimodal generation and editing across various domains, comprising image, video, 3D, and audio. Specifically, we summarize the notable advancements with milestone works in these fields and categorize these studies into LLM-based and CLIP/T5-based methods. Then, we summarize the various roles of LLMs in multimodal generation and exhaustively investigate the critical technical components behind these methods and the multimodal datasets utilized in these studies. Additionally, we dig into tool-augmented multimodal agents that can leverage existing generative models for human-computer interaction. Lastly, we discuss the advancements in the generative AI safety field, investigate emerging applications, and discuss future prospects. Our work provides a systematic and insightful overview of multimodal generation and processing, which is expected to advance the development of Artificial Intelligence for Generative Content (AIGC) and world models. A curated list of all related papers can be found at https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation


Latent Video Diffusion Models for High-Fidelity Long Video Generation

arXiv.org Artificial Intelligence

AI-generated content has attracted lots of attention recently, but photo-realistic video synthesis is still challenging. Although many attempts using GANs and autoregressive models have been made in this area, the visual quality and length of generated videos are far from satisfactory. Diffusion models have shown remarkable results recently but require significant computational resources. To address this, we introduce lightweight video diffusion models by leveraging a low-dimensional 3D latent space, significantly outperforming previous pixel-space video diffusion models under a limited computational budget. In addition, we propose hierarchical diffusion in the latent space such that longer videos with more than one thousand frames can be produced. To further overcome the performance degradation issue for long video generation, we propose conditional latent perturbation and unconditional guidance that effectively mitigate the accumulated errors during the extension of video length. Extensive experiments on small domain datasets of different categories suggest that our framework generates more realistic and longer videos than previous strong baselines. We additionally provide an extension to large-scale text-to-video generation to demonstrate the superiority of our work. Our code and models will be made publicly available.