Goto

Collaborating Authors

 He, Xiaofeng


SLAM in the Dark: Self-Supervised Learning of Pose, Depth and Loop-Closure from Thermal Images

arXiv.org Artificial Intelligence

SLAM in the Dark: Self-Supervised Learning of Pose, Depth and Loop-Closure from Thermal Images Y angfan Xu, Qu Hao, Lilian Zhang, Jun Mao, Xiaofeng He, Wenqi Wu, Changhao Chen* Abstract -- Visual SLAM is essential for mobile robots, drone navigation, and VR/AR, but traditional RGB camera systems struggle in low-light conditions, driving interest in thermal SLAM, which excels in such environments. However, thermal imaging faces challenges like low contrast, high noise, and limited large-scale annotated datasets, restricting the use of deep learning in outdoor scenarios. We present DarkSLAM, a noval deep learning-based monocular thermal SLAM system designed for large-scale localization and reconstruction in complex lighting conditions.Our approach incorporates the Efficient Channel Attention (ECA) mechanism in visual odometry and the Selective Kernel Attention (SKA) mechanism in depth estimation to enhance pose accuracy and mitigate thermal depth degradation. Additionally, the system includes thermal depth-based loop closure detection and pose optimization, ensuring robust performance in low-texture thermal scenes. Extensive outdoor experiments demonstrate that DarkSLAM significantly outperforms existing methods like SC-Sfm-Learner and Shin et al., delivering precise localization and 3D dense mapping even in challenging nighttime environments. I. INTRODUCTION Simultaneous Localization and Mapping (SLAM) is crucial for intelligent systems from mobile robots, drones, to self-driving vehicles, enabling their real-time localization and mapping for autonomous navigation. Traditional visual SLAM systems, which rely on visible-light (RGB) cameras, struggle in challenging lighting conditions such as strong light, shadows, or nighttime, limiting their use in all-time scenarios. Thermal cameras, which detect heat radiation, offer a solution by functioning in darkness, smoke, and dust, complementing visible-light sensors. Recent improvements in thermal camera resolution and sensitivity have increased their reliability in autonomous systems.


Concept Based Continuous Prompts for Interpretable Text Classification

arXiv.org Artificial Intelligence

Continuous prompts have become widely adopted for augmenting performance across a wide range of natural language tasks. However, the underlying mechanism of this enhancement remains obscure. Previous studies rely on individual words for interpreting continuous prompts, which lacks comprehensive semantic understanding. Drawing inspiration from Concept Bottleneck Models, we propose a framework for interpreting continuous prompts by decomposing them into human-readable concepts. Specifically, to ensure the feasibility of the decomposition, we demonstrate that a corresponding concept embedding matrix and a coefficient matrix can always be found to replace the prompt embedding matrix. Then, we employ GPT-4o to generate a concept pool and choose potential candidate concepts that are discriminative and representative using a novel submodular optimization algorithm. Experiments demonstrate that our framework can achieve similar results as the original P-tuning and word-based approaches using only a few concepts while providing more plausible results. Our code is available at https://github.com/qq31415926/CD.


Lifelong Knowledge Editing for Vision Language Models with Low-Rank Mixture-of-Experts

arXiv.org Artificial Intelligence

Model editing aims to correct inaccurate knowledge, update outdated information, and incorporate new data into Large Language Models (LLMs) without the need for retraining. This task poses challenges in lifelong scenarios where edits must be continuously applied for real-world applications. While some editors demonstrate strong robustness for lifelong editing in pure LLMs, Vision LLMs (VLLMs), which incorporate an additional vision modality, are not directly adaptable to existing LLM editors. In this paper, we propose LiveEdit, a LIfelong Vision language modEl Edit to bridge the gap between lifelong LLM editing and VLLMs. We begin by training an editing expert generator to independently produce low-rank experts for each editing instance, with the goal of correcting the relevant responses of the VLLM. A hard filtering mechanism is developed to utilize visual semantic knowledge, thereby coarsely eliminating visually irrelevant experts for input queries during the inference stage of the post-edited model. Finally, to integrate visually relevant experts, we introduce a soft routing mechanism based on textual semantic relevance to achieve multi-expert fusion. For evaluation, we establish a benchmark for lifelong VLLM editing. Extensive experiments demonstrate that LiveEdit offers significant advantages in lifelong VLLM editing scenarios. Further experiments validate the rationality and effectiveness of each module design in LiveEdit.


UniPSDA: Unsupervised Pseudo Semantic Data Augmentation for Zero-Shot Cross-Lingual Natural Language Understanding

arXiv.org Artificial Intelligence

Cross-lingual representation learning transfers knowledge from resource-rich data to resource-scarce ones to improve the semantic understanding abilities of different languages. However, previous works rely on shallow unsupervised data generated by token surface matching, regardless of the global context-aware semantics of the surrounding text tokens. In this paper, we propose an Unsupervised Pseudo Semantic Data Augmentation (UniPSDA) mechanism for cross-lingual natural language understanding to enrich the training data without human interventions. Specifically, to retrieve the tokens with similar meanings for the semantic data augmentation across different languages, we propose a sequential clustering process in 3 stages: within a single language, across multiple languages of a language family, and across languages from multiple language families. Meanwhile, considering the multi-lingual knowledge infusion with context-aware semantics while alleviating computation burden, we directly replace the key constituents of the sentences with the above-learned multi-lingual family knowledge, viewed as pseudo-semantic. The infusion process is further optimized via three de-biasing techniques without introducing any neural parameters. Extensive experiments demonstrate that our model consistently improves the performance on general zero-shot cross-lingual natural language understanding tasks, including sequence classification, information extraction, and question answering.


PE: A Poincare Explanation Method for Fast Text Hierarchy Generation

arXiv.org Artificial Intelligence

The black-box nature of deep learning models in NLP hinders their widespread application. The research focus has shifted to Hierarchical Attribution (HA) for its ability to model feature interactions. Recent works model non-contiguous combinations with a time-costly greedy search in Eculidean spaces, neglecting underlying linguistic information in feature representations. In this work, we introduce a novel method, namely Poincare Explanation (PE), for modeling feature interactions with hyperbolic spaces in a time efficient manner. Specifically, we take building text hierarchies as finding spanning trees in hyperbolic spaces. First we project the embeddings into hyperbolic spaces to elicit inherit semantic and syntax hierarchical structures. Then we propose a simple yet effective strategy to calculate Shapley score. Finally we build the the hierarchy with proving the constructing process in the projected space could be viewed as building a minimum spanning tree and introduce a time efficient building algorithm. Experimental results demonstrate the effectiveness of our approach.


DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models

arXiv.org Artificial Intelligence

Recently, while large language models (LLMs) have demonstrated impressive results, they still suffer from hallucination, i.e., the generation of false information. Model editing is the task of fixing factual mistakes in LLMs; yet, most previous works treat it as a one-time task, paying little attention to ever-emerging mistakes generated by LLMs. We address the task of sequential model editing (SME) that aims to rectify mistakes continuously. A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence, preventing catastrophic forgetting during the editing process of multiple knowledge triples. Specifically, (1) for semantic fusion within a relation triple, we aggregate the intra-editing attention flow into auto-regressive self-attention with token-level granularity in LLMs. We further leverage multi-layer diagonal inter-editing attention flow to update the weighted representations of the entire sequence-level granularity. (2) Considering that auxiliary parameters are required to store the knowledge for sequential editing, we construct a new dataset named \textbf{DAFSet}, fulfilling recent, popular, long-tail and robust properties to enhance the generality of sequential editing. Experiments show DAFNet significantly outperforms strong baselines in single-turn and sequential editing. The usage of DAFSet also consistently improves the performance of other auxiliary network-based methods in various scenarios


Lifelong Knowledge Editing for LLMs with Retrieval-Augmented Continuous Prompt Learning

arXiv.org Artificial Intelligence

Model editing aims to correct outdated or erroneous knowledge in large language models (LLMs) without the need for costly retraining. Lifelong model editing is the most challenging task that caters to the continuous editing requirements of LLMs. Prior works primarily focus on single or batch editing; nevertheless, these methods fall short in lifelong editing scenarios due to catastrophic knowledge forgetting and the degradation of model performance. Although retrieval-based methods alleviate these issues, they are impeded by slow and cumbersome processes of integrating the retrieved knowledge into the model. In this work, we introduce RECIPE, a RetriEval-augmented ContInuous Prompt lEarning method, to boost editing efficacy and inference efficiency in lifelong learning. RECIPE first converts knowledge statements into short and informative continuous prompts, prefixed to the LLM's input query embedding, to efficiently refine the response grounded on the knowledge. It further integrates the Knowledge Sentinel (KS) that acts as an intermediary to calculate a dynamic threshold, determining whether the retrieval repository contains relevant knowledge. Our retriever and prompt encoder are jointly trained to achieve editing properties, i.e., reliability, generality, and locality. In our experiments, RECIPE is assessed extensively across multiple LLMs and editing datasets, where it achieves superior editing performance. RECIPE also demonstrates its capability to maintain the overall performance of LLMs alongside showcasing fast editing and inference speed.


TRELM: Towards Robust and Efficient Pre-training for Knowledge-Enhanced Language Models

arXiv.org Artificial Intelligence

KEPLMs are pre-trained models that utilize external knowledge to enhance language understanding. Previous language models facilitated knowledge acquisition by incorporating knowledge-related pre-training tasks learned from relation triples in knowledge graphs. However, these models do not prioritize learning embeddings for entity-related tokens. Moreover, updating the entire set of parameters in KEPLMs is computationally demanding. This paper introduces TRELM, a Robust and Efficient Pre-training framework for Knowledge-Enhanced Language Models. We observe that entities in text corpora usually follow the long-tail distribution, where the representations of some entities are suboptimally optimized and hinder the pre-training process for KEPLMs. To tackle this, we employ a robust approach to inject knowledge triples and employ a knowledge-augmented memory bank to capture valuable information. Furthermore, updating a small subset of neurons in the feed-forward networks (FFNs) that store factual knowledge is both sufficient and efficient. Specifically, we utilize dynamic knowledge routing to identify knowledge paths in FFNs and selectively update parameters during pre-training. Experimental results show that TRELM reduces pre-training time by at least 50% and outperforms other KEPLMs in knowledge probing tasks and multiple knowledge-aware language understanding tasks.


CIDR: A Cooperative Integrated Dynamic Refining Method for Minimal Feature Removal Problem

arXiv.org Artificial Intelligence

The minimal feature removal problem in the post-hoc explanation area aims to identify the minimal feature set (MFS). Prior studies using the greedy algorithm to calculate the minimal feature set lack the exploration of feature interactions under a monotonic assumption which cannot be satisfied in general scenarios. In order to address the above limitations, we propose a Cooperative Integrated Dynamic Refining method (CIDR) to efficiently discover minimal feature sets. Specifically, we design Cooperative Integrated Gradients (CIG) to detect interactions between features. By incorporating CIG and characteristics of the minimal feature set, we transform the minimal feature removal problem into a knapsack problem. Additionally, we devise an auxiliary Minimal Feature Refinement algorithm to determine the minimal feature set from numerous candidate sets. To the best of our knowledge, our work is the first to address the minimal feature removal problem in the field of natural language processing. Extensive experiments demonstrate that CIDR is capable of tracing representative minimal feature sets with improved interpretability across various models and datasets.


DK-SLAM: Monocular Visual SLAM with Deep Keypoints Adaptive Learning, Tracking and Loop-Closing

arXiv.org Artificial Intelligence

Unreliable feature extraction and matching in handcrafted features undermine the performance of visual SLAM in complex real-world scenarios. While learned local features, leveraging CNNs, demonstrate proficiency in capturing high-level information and excel in matching benchmarks, they encounter challenges in continuous motion scenes, resulting in poor generalization and impacting loop detection accuracy. To address these issues, we present DK-SLAM, a monocular visual SLAM system with adaptive deep local features. MAML optimizes the training of these features, and we introduce a coarse-to-fine feature tracking approach. Initially, a direct method approximates the relative pose between consecutive frames, followed by a feature matching method for refined pose estimation. To counter cumulative positioning errors, a novel online learning binary feature-based online loop closure module identifies loop nodes within a sequence. Experimental results underscore DK-SLAM's efficacy, outperforms representative SLAM solutions, such as ORB-SLAM3 on publicly available datasets.