Goto

Collaborating Authors

 He, Wenbin


InterChat: Enhancing Generative Visual Analytics using Multimodal Interactions

arXiv.org Artificial Intelligence

The rise of Large Language Models (LLMs) and generative visual analytics systems has transformed data-driven insights, yet significant challenges persist in accurately interpreting users' analytical and interaction intents. While language inputs offer flexibility, they often lack precision, making the expression of complex intents inefficient, error-prone, and time-intensive. To address these limitations, we investigate the design space of multimodal interactions for generative visual analytics through a literature review and pilot brainstorming sessions. Building on these insights, we introduce a highly extensible workflow that integrates multiple LLM agents for intent inference and visualization generation. We develop InterChat, a generative visual analytics system that combines direct manipulation of visual elements with natural language inputs. This integration enables precise intent communication and supports progressive, visually driven exploratory data analyses. By employing effective prompt engineering, and contextual interaction linking, alongside intuitive visualization and interaction designs, InterChat bridges the gap between user interactions and LLM-driven visualizations, enhancing both interpretability and usability. Extensive evaluations, including two usage scenarios, a user study, and expert feedback, demonstrate the effectiveness of InterChat. Results show significant improvements in the accuracy and efficiency of handling complex visual analytics tasks, highlighting the potential of multimodal interactions to redefine user engagement and analytical depth in generative visual analytics.


InterVLS: Interactive Model Understanding and Improvement with Vision-Language Surrogates

arXiv.org Artificial Intelligence

Deep learning models are widely used in critical applications, highlighting the need for pre-deployment model understanding and improvement. Visual concept-based methods, while increasingly used for this purpose, face challenges: (1) most concepts lack interpretability, (2) existing methods require model knowledge, often unavailable at run time. Additionally, (3) there lacks a no-code method for post-understanding model improvement. Addressing these, we present InterVLS. The system facilitates model understanding by discovering text-aligned concepts, measuring their influence with model-agnostic linear surrogates. Employing visual analytics, InterVLS offers concept-based explanations and performance insights. It enables users to adjust concept influences to update a model, facilitating no-code model improvement. We evaluate InterVLS in a user study, illustrating its functionality with two scenarios. Results indicates that InterVLS is effective to help users identify influential concepts to a model, gain insights and adjust concept influence to improve the model. We conclude with a discussion based on our study results.


A Graph Reconstruction by Dynamic Signal Coefficient for Fault Classification

arXiv.org Artificial Intelligence

To improve the performance in identifying the faults under strong noise for rotating machinery, this paper presents a dynamic feature reconstruction signal graph method, which plays the key role of the proposed end-to-end fault diagnosis model. Specifically, the original mechanical signal is first decomposed by wavelet packet decomposition (WPD) to obtain multiple subbands including coefficient matrix. Then, with originally defined two feature extraction factors MDD and DDD, a dynamic feature selection method based on L2 energy norm (DFSL) is proposed, which can dynamically select the feature coefficient matrix of WPD based on the difference in the distribution of norm energy, enabling each sub-signal to take adaptive signal reconstruction. Next the coefficient matrices of the optimal feature sub-bands are reconstructed and reorganized to obtain the feature signal graphs. Finally, deep features are extracted from the feature signal graphs by 2D-Convolutional neural network (2D-CNN). Experimental results on a public data platform of a bearing and our laboratory platform of robot grinding show that this method is better than the existing methods under different noise intensities.


GradOrth: A Simple yet Efficient Out-of-Distribution Detection with Orthogonal Projection of Gradients

arXiv.org Artificial Intelligence

Detecting out-of-distribution (OOD) data is crucial for ensuring the safe deployment of machine learning models in real-world applications. However, existing OOD detection approaches primarily rely on the feature maps or the full gradient space information to derive OOD scores neglecting the role of most important parameters of the pre-trained network over in-distribution (ID) data. In this study, we propose a novel approach called GradOrth to facilitate OOD detection based on one intriguing observation that the important features to identify OOD data lie in the lower-rank subspace of in-distribution (ID) data. In particular, we identify OOD data by computing the norm of gradient projection on the subspaces considered important for the in-distribution data. A large orthogonal projection value (i.e. a small projection value) indicates the sample as OOD as it captures a weak correlation of the ID data. This simple yet effective method exhibits outstanding performance, showcasing a notable reduction in the average false positive rate at a 95% true positive rate (FPR95) of up to 8% when compared to the current state-of-the-art methods.


Hyp-OW: Exploiting Hierarchical Structure Learning with Hyperbolic Distance Enhances Open World Object Detection

arXiv.org Artificial Intelligence

Open World Object Detection (OWOD) is a challenging and realistic task that extends beyond the scope of standard Object Detection task. It involves detecting both known and unknown objects while integrating learned knowledge for future tasks. However, the level of 'unknownness' varies significantly depending on the context. For example, a tree is typically considered part of the background in a self-driving scene, but it may be significant in a household context. We argue that this external or contextual information should already be embedded within the known classes. In other words, there should be a semantic or latent structure relationship between the known and unknown items to be discovered. Motivated by this observation, we propose Hyp-OW, a method that learns and models hierarchical representation of known items through a SuperClass Regularizer. Leveraging this learned representation allows us to effectively detect unknown objects using a Similarity Distance-based Relabeling module. Extensive experiments on benchmark datasets demonstrate the effectiveness of Hyp-OW achieving improvement in both known and unknown detection (up to 6 points). These findings are particularly pronounced in our newly designed benchmark, where a strong hierarchical structure exists between known and unknown objects.


CLIP-S$^4$: Language-Guided Self-Supervised Semantic Segmentation

arXiv.org Artificial Intelligence

Existing semantic segmentation approaches are often limited by costly pixel-wise annotations and predefined classes. In this work, we present CLIP-S$^4$ that leverages self-supervised pixel representation learning and vision-language models to enable various semantic segmentation tasks (e.g., unsupervised, transfer learning, language-driven segmentation) without any human annotations and unknown class information. We first learn pixel embeddings with pixel-segment contrastive learning from different augmented views of images. To further improve the pixel embeddings and enable language-driven semantic segmentation, we design two types of consistency guided by vision-language models: 1) embedding consistency, aligning our pixel embeddings to the joint feature space of a pre-trained vision-language model, CLIP; and 2) semantic consistency, forcing our model to make the same predictions as CLIP over a set of carefully designed target classes with both known and unknown prototypes. Thus, CLIP-S$^4$ enables a new task of class-free semantic segmentation where no unknown class information is needed during training. As a result, our approach shows consistent and substantial performance improvement over four popular benchmarks compared with the state-of-the-art unsupervised and language-driven semantic segmentation methods. More importantly, our method outperforms these methods on unknown class recognition by a large margin.


Self-supervised Semantic Segmentation Grounded in Visual Concepts

arXiv.org Artificial Intelligence

Unsupervised semantic segmentation requires assigning a label to every pixel without any human annotations. Despite recent advances in self-supervised representation learning for individual images, unsupervised semantic segmentation with pixel-level representations is still a challenging task and remains underexplored. In this work, we propose a self-supervised pixel representation learning method for semantic segmentation by using visual concepts (i.e., groups of pixels with semantic meanings, such as parts, objects, and scenes) extracted from images. To guide self-supervised learning, we leverage three types of relationships between pixels and concepts, including the relationships between pixels and local concepts, local and global concepts, as well as the co-occurrence of concepts. We evaluate the learned pixel embeddings and visual concepts on three datasets, including PASCAL VOC 2012, COCO 2017, and DAVIS 2017. Our results show that the proposed method gains consistent and substantial improvements over recent unsupervised semantic segmentation approaches, and also demonstrate that visual concepts can reveal insights into image datasets.