Plotting

 He, Tianyu


Fast Autoregressive Video Generation with Diagonal Decoding

arXiv.org Artificial Intelligence

Autoregressive Transformer models have demonstrated impressive performance in video generation, but their sequential token-by-token decoding process poses a major bottleneck, particularly for long videos represented by tens of thousands of tokens. In this paper, we propose Diagonal Decoding (DiagD), a training-free inference acceleration algorithm for autoregressively pre-trained models that exploits spatial and temporal correlations in videos. Our method generates tokens along diagonal paths in the spatial-temporal token grid, enabling parallel decoding within each frame as well as partially overlapping across consecutive frames. The proposed algorithm is versatile and adaptive to various generative models and tasks, while providing flexible control over the trade-off between inference speed and visual quality. Furthermore, we propose a cost-effective finetuning strategy that aligns the attention patterns of the model with our decoding order, further mitigating the training-inference gap on small-scale models. Experiments on multiple autoregressive video generation models and datasets demonstrate that DiagD achieves up to $10\times$ speedup compared to naive sequential decoding, while maintaining comparable visual fidelity.


HiTVideo: Hierarchical Tokenizers for Enhancing Text-to-Video Generation with Autoregressive Large Language Models

arXiv.org Artificial Intelligence

Text-to-video generation poses significant challenges due to the inherent complexity of video data, which spans both temporal and spatial dimensions. It introduces additional redundancy, abrupt variations, and a domain gap between language and vision tokens while generation. Addressing these challenges requires an effective video tokenizer that can efficiently encode video data while preserving essential semantic and spatiotemporal information, serving as a critical bridge between text and vision. Inspired by the observation in VQ-VAE-2 and workflows of traditional animation, we propose HiTVideo for text-to-video generation with hierarchical tokenizers. It utilizes a 3D causal VAE with a multi-layer discrete token framework, encoding video content into hierarchically structured codebooks. Higher layers capture semantic information with higher compression, while lower layers focus on fine-grained spatiotemporal details, striking a balance between compression efficiency and reconstruction quality. Our approach efficiently encodes longer video sequences (e.g., 8 seconds, 64 frames), reducing bits per pixel (bpp) by approximately 70\% compared to baseline tokenizers, while maintaining competitive reconstruction quality. We explore the trade-offs between compression and reconstruction, while emphasizing the advantages of high-compressed semantic tokens in text-to-video tasks. HiTVideo aims to address the potential limitations of existing video tokenizers in text-to-video generation tasks, striving for higher compression ratios and simplify LLMs modeling under language guidance, offering a scalable and promising framework for advancing text to video generation. Demo page: https://ziqinzhou66.github.io/project/HiTVideo.


(How) Can Transformers Predict Pseudo-Random Numbers?

arXiv.org Machine Learning

Transformers excel at discovering patterns in sequential data, yet their fundamental limitations and learning mechanisms remain crucial topics of investigation. In this paper, we study the ability of Transformers to learn pseudo-random number sequences from linear congruential generators (LCGs), defined by the recurrence relation $x_{t+1} = a x_t + c \;\mathrm{mod}\; m$. Our analysis reveals that with sufficient architectural capacity and training data variety, Transformers can perform in-context prediction of LCG sequences with unseen moduli ($m$) and parameters ($a,c$). Through analysis of embedding layers and attention patterns, we uncover how Transformers develop algorithmic structures to learn these sequences in two scenarios of increasing complexity. First, we analyze how Transformers learn LCG sequences with unseen ($a, c$) but fixed modulus, and we demonstrate successful learning up to $m = 2^{32}$. Our analysis reveals that models learn to factorize the modulus and utilize digit-wise number representations to make sequential predictions. In the second, more challenging scenario of unseen moduli, we show that Transformers can generalize to unseen moduli up to $m_{\text{test}} = 2^{16}$. In this case, the model employs a two-step strategy: first estimating the unknown modulus from the context, then utilizing prime factorizations to generate predictions. For this task, we observe a sharp transition in the accuracy at a critical depth $=3$. We also find that the number of in-context sequence elements needed to reach high accuracy scales sublinearly with the modulus.


VidTwin: Video VAE with Decoupled Structure and Dynamics

arXiv.org Artificial Intelligence

Recent advancements in video autoencoders (Video AEs) have significantly improved the quality and efficiency of video generation. In this paper, we propose a novel and compact video autoencoder, VidTwin, that decouples video into two distinct latent spaces: Structure latent vectors, which capture overall content and global movement, and Dynamics latent vectors, which represent fine-grained details and rapid movements. Specifically, our approach leverages an Encoder-Decoder backbone, augmented with two submodules for extracting these latent spaces, respectively. The first submodule employs a Q-Former to extract low-frequency motion trends, followed by downsampling blocks to remove redundant content details. The second averages the latent vectors along the spatial dimension to capture rapid motion. Extensive experiments show that VidTwin achieves a high compression rate of 0.20% with high reconstruction quality (PSNR of 28.14 on the MCL-JCV dataset), and performs efficiently and effectively in downstream generative tasks. Moreover, our model demonstrates explainability and scalability, paving the way for future research in video latent representation and generation. Our code has been released at https://github.com/microsoft/VidTok/tree/main/vidtwin.


VidTok: A Versatile and Open-Source Video Tokenizer

arXiv.org Artificial Intelligence

Encoding video content into compact latent tokens has become a fundamental step in video generation and understanding, driven by the need to address the inherent redundancy in pixel-level representations. Consequently, there is a growing demand for high-performance, open-source video tokenizers as video-centric research gains prominence. We introduce VidTok, a versatile video tokenizer that delivers state-of-the-art performance in both continuous and discrete tokenizations. VidTok incorporates several key advancements over existing approaches: 1) model architecture such as convolutional layers and up/downsampling modules; 2) to address the training instability and codebook collapse commonly associated with conventional Vector Quantization (VQ), we integrate Finite Scalar Quantization (FSQ) into discrete video tokenization; 3) improved training strategies, including a two-stage training process and the use of reduced frame rates. By integrating these advancements, VidTok achieves substantial improvements over existing methods, demonstrating superior performance across multiple metrics, including PSNR, SSIM, LPIPS, and FVD, under standardized evaluation settings.


IGOR: Image-GOal Representations are the Atomic Control Units for Foundation Models in Embodied AI

arXiv.org Artificial Intelligence

We introduce Image-GOal Representations (IGOR), aiming to learn a unified, semantically consistent action space across human and various robots. Through this unified latent action space, IGOR enables knowledge transfer among large-scale robot and human activity data. We achieve this by compressing visual changes between an initial image and its goal state into latent actions. IGOR allows us to generate latent action labels for internet-scale video data. This unified latent action space enables the training of foundation policy and world models across a wide variety of tasks performed by both robots and humans. We demonstrate that: (1) IGOR learns a semantically consistent action space for both human and robots, characterizing various possible motions of objects representing the physical interaction knowledge; (2) IGOR can "migrate" the movements of the object in the one video to other videos, even across human and robots, by jointly using the latent action model and world model; (3) IGOR can learn to align latent actions with natural language through the foundation policy model, and integrate latent actions with a low-level policy model to achieve effective robot control. We believe IGOR opens new possibilities for human-to-robot knowledge transfer and control.


Grokking Modular Polynomials

arXiv.org Machine Learning

Neural networks readily learn a subset of the modular arithmetic tasks, while failing to generalize on the rest. This limitation remains unmoved by the choice of architecture and training strategies. On the other hand, an analytical solution for the weights of Multi-layer Perceptron (MLP) networks that generalize on the modular addition task is known in the literature. In this work, we (i) extend the class of analytical solutions to include modular multiplication as well as modular addition with many terms. Additionally, we show that real networks trained on these datasets learn similar solutions upon generalization (grokking).


Learning to grok: Emergence of in-context learning and skill composition in modular arithmetic tasks

arXiv.org Machine Learning

Large language models can solve tasks that were not present in the training set. This capability is believed to be due to in-context learning and skill composition. In this work, we study the emergence of in-context learning and skill composition in a collection of modular arithmetic tasks. Specifically, we consider a finite collection of linear modular functions $z = a \, x + b \, y \;\mathrm{mod}\; p$ labeled by the vector $(a, b) \in \mathbb{Z}_p^2$. We use some of these tasks for pre-training and the rest for out-of-distribution testing. We empirically show that a GPT-style transformer exhibits a transition from in-distribution to out-of-distribution generalization as the number of pre-training tasks increases. We find that the smallest model capable of out-of-distribution generalization requires two transformer blocks, while for deeper models, the out-of-distribution generalization phase is \emph{transient}, necessitating early stopping. Finally, we perform an interpretability study of the pre-trained models, revealing the highly structured representations in both phases; and discuss the learnt algorithm.


InstructAvatar: Text-Guided Emotion and Motion Control for Avatar Generation

arXiv.org Artificial Intelligence

Recent talking avatar generation models have made strides in achieving realistic and accurate lip synchronization with the audio, but often fall short in controlling and conveying detailed expressions and emotions of the avatar, making the generated video less vivid and controllable. In this paper, we propose a novel text-guided approach for generating emotionally expressive 2D avatars, offering fine-grained control, improved interactivity, and generalizability to the resulting video. Our framework, named InstructAvatar, leverages a natural language interface to control the emotion as well as the facial motion of avatars. Technically, we design an automatic annotation pipeline to construct an instruction-video paired training dataset, equipped with a novel two-branch diffusion-based generator to predict avatars with audio and text instructions at the same time. Experimental results demonstrate that InstructAvatar produces results that align well with both conditions, and outperforms existing methods in fine-grained emotion control, lip-sync quality, and naturalness. Our project page is https://wangyuchi369.github.io/InstructAvatar/.


First-principles Based 3D Virtual Simulation Testing for Discovering SOTIF Corner Cases of Autonomous Driving

arXiv.org Artificial Intelligence

3D virtual simulation, which generates diversified test scenarios and tests full-stack of Autonomous Driving Systems (ADSes) modules dynamically as a whole, is a promising approach for Safety of The Intended Functionality (SOTIF) ADS testing. However, as different configurations of a test scenario will affect the sensor perceptions and environment interaction, e.g. light pulses emitted by the LiDAR sensor will undergo backscattering and attenuation, which is usually overlooked by existing works, leading to false positives or wrong results. Moreover, the input space of an ADS is extremely large, with infinite number of possible initial scenarios and mutations, along both temporal and spatial domains. This paper proposes a first-principles based sensor modeling and environment interaction scheme, and integrates it into CARLA simulator. With this scheme, a long-overlooked category of adverse weather related corner cases are discovered, along with their root causes. Moreover, a meta-heuristic algorithm is designed based on several empirical insights, which guide both seed scenarios and mutations, significantly reducing the search dimensions of scenarios and enhancing the efficiency of corner case identification. Experimental results show that under identical simulation setups, our algorithm discovers about four times as many corner cases as compared to state-of-the-art work.