Goto

Collaborating Authors

 He, Kun


LocalEscaper: A Weakly-supervised Framework with Regional Reconstruction for Scalable Neural TSP Solvers

arXiv.org Artificial Intelligence

Neural solvers have shown significant potential in solving the Traveling Salesman Problem (TSP), yet current approaches face significant challenges. Supervised learning (SL)-based solvers require large amounts of high-quality labeled data, while reinforcement learning (RL)-based solvers, though less dependent on such data, often suffer from inefficiencies. To address these limitations, we propose LocalEscaper, a novel weakly-supervised learning framework for large-scale TSP. LocalEscaper effectively combines the advantages of both SL and RL, enabling effective training on datasets with low-quality labels. To further enhance solution quality, we introduce a regional reconstruction strategy, which mitigates the problem of local optima, a common issue in existing local reconstruction methods. Additionally, we propose a linear-complexity attention mechanism that reduces computational overhead, enabling the efficient solution of large-scale TSPs without sacrificing performance. Experimental results on both synthetic and real-world datasets demonstrate that LocalEscaper outperforms existing neural solvers, achieving state-of-the-art results. Notably, it sets a new benchmark for scalability and efficiency, solving TSP instances with up to 50,000 cities.


Rethinking Tokenized Graph Transformers for Node Classification

arXiv.org Artificial Intelligence

Node tokenized graph Transformers (GTs) have shown promising performance in node classification. The generation of token sequences is the key module in existing tokenized GTs which transforms the input graph into token sequences, facilitating the node representation learning via Transformer. In this paper, we observe that the generations of token sequences in existing GTs only focus on the first-order neighbors on the constructed similarity graphs, which leads to the limited usage of nodes to generate diverse token sequences, further restricting the potential of tokenized GTs for node classification. To this end, we propose a new method termed SwapGT. SwapGT first introduces a novel token swapping operation based on the characteristics of token sequences that fully leverages the semantic relevance of nodes to generate more informative token sequences. Then, SwapGT leverages a Transformer-based backbone to learn node representations from the generated token sequences. Moreover, SwapGT develops a center alignment loss to constrain the representation learning from multiple token sequences, further enhancing the model performance. Extensive empirical results on various datasets showcase the superiority of SwapGT for node classification.


Refining Adaptive Zeroth-Order Optimization at Ease

arXiv.org Artificial Intelligence

Recently, zeroth-order (ZO) optimization plays an essential role in scenarios where gradient information is inaccessible or unaffordable, such as black-box systems and resource-constrained environments. While existing adaptive methods such as ZO-AdaMM have shown promise, they are fundamentally limited by their underutilization of moment information during optimization, usually resulting in underperforming convergence. To overcome these limitations, this paper introduces Refined Adaptive Zeroth-Order Optimization (R-AdaZO). Specifically, we first show the untapped variance reduction effect of first moment estimate on ZO gradient estimation, which improves the accuracy and stability of ZO updates. We then refine the second moment estimate based on these variance-reduced gradient estimates to better capture the geometry of the optimization landscape, enabling a more effective scaling of ZO updates. We present rigorous theoretical analysis to show (I) the first analysis to the variance reduction of first moment estimate in ZO optimization, (II) the improved second moment estimates with a more accurate approximation of its variance-free ideal, (III) the first variance-aware convergence framework for adaptive ZO methods, which may be of independent interest, and (IV) the faster convergence of R-AdaZO than existing baselines like ZO-AdaMM. Our extensive experiments, including synthetic problems, black-box adversarial attack, and memory-efficient fine-tuning of large language models (LLMs), further verify the superior convergence of R-AdaZO, indicating that R-AdaZO offers an improved solution for real-world ZO optimization challenges.


Rethinking Membership Inference Attacks Against Transfer Learning

arXiv.org Artificial Intelligence

Transfer learning, successful in knowledge translation across related tasks, faces a substantial privacy threat from membership inference attacks (MIAs). These attacks, despite posing significant risk to ML model's training data, remain limited-explored in transfer learning. The interaction between teacher and student models in transfer learning has not been thoroughly explored in MIAs, potentially resulting in an under-examined aspect of privacy vulnerabilities within transfer learning. In this paper, we propose a new MIA vector against transfer learning, to determine whether a specific data point was used to train the teacher model while only accessing the student model in a white-box setting. Our method delves into the intricate relationship between teacher and student models, analyzing the discrepancies in hidden layer representations between the student model and its shadow counterpart. These identified differences are then adeptly utilized to refine the shadow model's training process and to inform membership inference decisions effectively. Our method, evaluated across four datasets in diverse transfer learning tasks, reveals that even when an attacker only has access to the student model, the teacher model's training data remains susceptible to MIAs. We believe our work unveils the unexplored risk of membership inference in transfer learning.


Multi-armed Bandit and Backbone boost Lin-Kernighan-Helsgaun Algorithm for the Traveling Salesman Problems

arXiv.org Artificial Intelligence

The Lin-Kernighan-Helsguan (LKH) heuristic is a classic local search algorithm for the Traveling Salesman Problem (TSP). LKH introduces an $\alpha$-value to replace the traditional distance metric for evaluating the edge quality, which leads to a significant improvement. However, we observe that the $\alpha$-value does not make full use of the historical information during the search, and single guiding information often makes LKH hard to escape from some local optima. To address the above issues, we propose a novel way to extract backbone information during the TSP local search process, which is dynamic and can be updated once a local optimal solution is found. We further propose to combine backbone information, $\alpha$-value, and distance to evaluate the edge quality so as to guide the search. Moreover, we abstract their different combinations to arms in a multi-armed bandit (MAB) and use an MAB model to help the algorithm select an appropriate evaluation metric dynamically. Both the backbone information and MAB can provide diverse guiding information and learn from the search history to suggest the best metric. We apply our methods to LKH and LKH-3, which is an extension version of LKH that can be used to solve about 40 variant problems of TSP and Vehicle Routing Problem (VRP). Extensive experiments show the excellent performance and generalization capability of our proposed method, significantly improving LKH for TSP and LKH-3 for two representative TSP and VRP variants, the Colored TSP (CTSP) and Capacitated VRP with Time Windows (CVRPTW).


Adaptive Channel Allocation for Robust Differentiable Architecture Search

arXiv.org Artificial Intelligence

Differentiable ARchiTecture Search (DARTS) has attracted much attention due to its simplicity and significant improvement in efficiency. However, the excessive accumulation of the skip connection, when training epochs become large, makes it suffer from weak stability and low robustness, thus limiting its practical applications. Many works have attempted to restrict the accumulation of skip connections by indicators or manual design. These methods, however, are susceptible to human priors and hyper-parameters. In this work, we suggest a more subtle and direct approach that no longer explicitly searches for skip connections in the search stage, based on the paradox that skip connections were proposed to guarantee the performance of very deep networks, but the networks in the search stage of differentiable architecture search are actually very shallow. Instead, by introducing channel importance ranking and channel allocation strategy, the skip connections are implicitly searched and automatically refilled unimportant channels in the evaluation stage. Our method, dubbed Adaptive Channel Allocation (ACA) strategy, is a general-purpose approach for differentiable architecture search, which universally works in DARTS variants without introducing human priors, indicators, or hyper-parameters. Extensive experiments on various datasets and DARTS variants verify that the ACA strategy is the most effective one among existing methods in improving robustness and dealing with the collapse issue when training epochs become large.


Tokenizing 3D Molecule Structure with Quantized Spherical Coordinates

arXiv.org Artificial Intelligence

The application of language models (LMs) to molecular structure generation using line notations such as SMILES and SELFIES has been well-established in the field of cheminformatics. However, extending these models to generate 3D molecular structures presents significant challenges. Two primary obstacles emerge: (1) the difficulty in designing a 3D line notation that ensures SE(3)-invariant atomic coordinates, and (2) the non-trivial task of tokenizing continuous coordinates for use in LMs, which inherently require discrete inputs. To address these challenges, we propose Mol-StrucTok, a novel method for tokenizing 3D molecular structures. Our approach comprises two key innovations: (1) We design a line notation for 3D molecules by extracting local atomic coordinates in a spherical coordinate system. This notation builds upon existing 2D line notations and remains agnostic to their specific forms, ensuring compatibility with various molecular representation schemes. To further enhance the representation, we incorporate neighborhood bond lengths and bond angles as understanding descriptors. Leveraging this tokenization framework, we train a GPT-2 style model for 3D molecular generation tasks. Results demonstrate strong performance with significantly faster generation speeds and competitive chemical stability compared to previous methods. Further, by integrating our learned discrete representations into Graphormer model for property prediction on QM9 dataset, Mol-StrucTok reveals consistent improvements across various molecular properties, underscoring the versatility and robustness of our approach.


NTFormer: A Composite Node Tokenized Graph Transformer for Node Classification

arXiv.org Artificial Intelligence

Recently, the emerging graph Transformers have made significant advancements for node classification on graphs. In most graph Transformers, a crucial step involves transforming the input graph into token sequences as the model input, enabling Transformer to effectively learn the node representations. However, we observe that existing methods only express partial graph information of nodes through single-type token generation. Consequently, they require tailored strategies to encode additional graph-specific features into the Transformer to ensure the quality of node representation learning, limiting the model flexibility to handle diverse graphs. To this end, we propose a new graph Transformer called NTFormer to address this issue. NTFormer introduces a novel token generator called Node2Par, which constructs various token sequences using different token elements for each node. This flexibility allows Node2Par to generate valuable token sequences from different perspectives, ensuring comprehensive expression of rich graph features. Benefiting from the merits of Node2Par, NTFormer only leverages a Transformer-based backbone without graph-specific modifications to learn node representations, eliminating the need for graph-specific modifications. Extensive experiments conducted on various benchmark datasets containing homophily and heterophily graphs with different scales demonstrate the superiority of NTFormer over representative graph Transformers and graph neural networks for node classification.


Leveraging Contrastive Learning for Enhanced Node Representations in Tokenized Graph Transformers

arXiv.org Artificial Intelligence

While tokenized graph Transformers have demonstrated strong performance in node classification tasks, their reliance on a limited subset of nodes with high similarity scores for constructing token sequences overlooks valuable information from other nodes, hindering their ability to fully harness graph information for learning optimal node representations. To address this limitation, we propose a novel graph Transformer called GCFormer. Unlike previous approaches, GCFormer develops a hybrid token generator to create two types of token sequences, positive and negative, to capture diverse graph information. And a tailored Transformer-based backbone is adopted to learn meaningful node representations from these generated token sequences. Additionally, GCFormer introduces contrastive learning to extract valuable information from both positive and negative token sequences, enhancing the quality of learned node representations. Extensive experimental results across various datasets, including homophily and heterophily graphs, demonstrate the superiority of GCFormer in node classification, when compared to representative graph neural networks (GNNs) and graph Transformers.


CLAD: Robust Audio Deepfake Detection Against Manipulation Attacks with Contrastive Learning

arXiv.org Artificial Intelligence

The increasing prevalence of audio deepfakes poses significant security threats, necessitating robust detection methods. While existing detection systems exhibit promise, their robustness against malicious audio manipulations remains underexplored. To bridge the gap, we undertake the first comprehensive study of the susceptibility of the most widely adopted audio deepfake detectors to manipulation attacks. Surprisingly, even manipulations like volume control can significantly bypass detection without affecting human perception. To address this, we propose CLAD (Contrastive Learning-based Audio deepfake Detector) to enhance the robustness against manipulation attacks. The key idea is to incorporate contrastive learning to minimize the variations introduced by manipulations, therefore enhancing detection robustness. Additionally, we incorporate a length loss, aiming to improve the detection accuracy by clustering real audios more closely in the feature space. We comprehensively evaluated the most widely adopted audio deepfake detection models and our proposed CLAD against various manipulation attacks. The detection models exhibited vulnerabilities, with FAR rising to 36.69%, 31.23%, and 51.28% under volume control, fading, and noise injection, respectively. CLAD enhanced robustness, reducing the FAR to 0.81% under noise injection and consistently maintaining an FAR below 1.63% across all tests. Our source code and documentation are available in the artifact repository (https://github.com/CLAD23/CLAD).