Goto

Collaborating Authors

 He, Jian


Milmer: a Framework for Multiple Instance Learning based Multimodal Emotion Recognition

arXiv.org Artificial Intelligence

Emotions play a crucial role in human behavior and decision-making, making emotion recognition a key area of interest in human-computer interaction (HCI). This study addresses the challenges of emotion recognition by integrating facial expression analysis with electroencephalogram (EEG) signals, introducing a novel multimodal framework-Milmer. The proposed framework employs a transformer-based fusion approach to effectively integrate visual and physiological modalities. It consists of an EEG preprocessing module, a facial feature extraction and balancing module, and a cross-modal fusion module. To enhance visual feature extraction, we fine-tune a pre-trained Swin Transformer on emotion-related datasets. Additionally, a cross-attention mechanism is introduced to balance token representation across modalities, ensuring effective feature integration. A key innovation of this work is the adoption of a multiple instance learning (MIL) approach, which extracts meaningful information from multiple facial expression images over time, capturing critical temporal dynamics often overlooked in previous studies. Extensive experiments conducted on the DEAP dataset demonstrate the superiority of the proposed framework, achieving a classification accuracy of 96.72% in the four-class emotion recognition task. Ablation studies further validate the contributions of each module, highlighting the significance of advanced feature extraction and fusion strategies in enhancing emotion recognition performance. Our code are available at https://github.com/liangyubuaa/Milmer.


An Integrated Artificial Intelligence Operating System for Advanced Low-Altitude Aviation Applications

arXiv.org Artificial Intelligence

This paper introduces a high-performance artificial intelligence operating system tailored for low-altitude aviation, designed to address key challenges such as real-time task execution, computational efficiency, and seamless modular collaboration. Built on a powerful hardware platform and leveraging the UNIX architecture, the system implements a distributed data processing strategy that ensures rapid and efficient synchronization across critical modules, including vision, navigation, and perception. By adopting dynamic resource management, it optimally allocates computational resources, such as CPU and GPU, based on task priority and workload, ensuring high performance for demanding tasks like real-time video processing and AI model inference. Furthermore, the system features an advanced interrupt handling mechanism that allows for quick responses to sudden environmental changes, such as obstacle detection, by prioritizing critical tasks, thus improving safety and mission success rates. Robust security measures, including data encryption, access control, and fault tolerance, ensure the system's resilience against external threats and its ability to recover from potential hardware or software failures. Complementing these core features are modular components for image analysis, multi-sensor fusion, dynamic path planning, multi-drone coordination, and ground station monitoring. Additionally, a low-code development platform simplifies user customization, making the system adaptable to various mission-specific needs. This comprehensive approach ensures the system meets the evolving demands of intelligent aviation, providing a stable, efficient, and secure environment for complex drone operations.


Enhancing Character-Level Understanding in LLMs through Token Internal Structure Learning

arXiv.org Artificial Intelligence

Tokenization methods like Byte-Pair Encoding (BPE) enhance computational efficiency in large language models (LLMs) but often obscure internal character structures within tokens. This limitation hinders LLMs' ability to predict precise character positions, which is crucial in tasks like Chinese Spelling Correction (CSC) where identifying the positions of misspelled characters accelerates correction processes. We propose Token Internal Position Awareness (TIPA), a method that significantly improves models' ability to capture character positions within tokens by training them on reverse character prediction tasks using the tokenizer's vocabulary. Experiments demonstrate that TIPA enhances position prediction accuracy in LLMs, enabling more precise identification of target characters in original text. Furthermore, when applied to downstream tasks that do not require exact position prediction, TIPA still boosts performance in tasks needing character-level information, validating its versatility and effectiveness.


YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention

arXiv.org Artificial Intelligence

The accurate prediction of drug molecule solubility is essential for determining their therapeutic effectiveness and safety, influencing the drug's ADME processes. Traditional solubility prediction techniques often fail to capture the complex nature of molecular tructures, leading to notable deviations between predictions and actual results. For example, the Discussion on Advanced Drug-Like Compound Structures. Lusci highlighted issues in capturing crucial cyclic structural information in molecules with ring structures. To overcome this issue, our research introduces a novel deep learning framework combining attention-based transformers, Long Short-Term Memory (LSTM) networks, and Graph Convolutional Networks (GCN), aimed at enhancing the precision of solubility predictions. Utilizing a training set of 9,943 compounds and testing on an anticancer compound dataset, our method achieved a correlation coefficient ($R^2$) of 0.59 and a Root Mean Square Error (RMSE) of 0.57, which outperforms the benchmark models' scores of 0.52 ($R^2$) and 0.61 (RMSE). Importantly, in an additional independent test, our model significantly outperformed the baseline with an RMSE of 1.05 compared to 1.28, a relative accuracy improvement of 45.9%. This research not only demonstrates the vast potential of deep learning for improving solubility prediction accuracy but also offers novel insights for drug design and selection in the future. Continued efforts will be directed towards optimizing the model architecture and extending its application to better support the drug development process, underscoring the pivotal role of deep learning in drug discovery.


Unleashing the Strengths of Unlabeled Data in Pan-cancer Abdominal Organ Quantification: the FLARE22 Challenge

arXiv.org Artificial Intelligence

Quantitative organ assessment is an essential step in automated abdominal disease diagnosis and treatment planning. Artificial intelligence (AI) has shown great potential to automatize this process. However, most existing AI algorithms rely on many expert annotations and lack a comprehensive evaluation of accuracy and efficiency in real-world multinational settings. To overcome these limitations, we organized the FLARE 2022 Challenge, the largest abdominal organ analysis challenge to date, to benchmark fast, low-resource, accurate, annotation-efficient, and generalized AI algorithms. We constructed an intercontinental and multinational dataset from more than 50 medical groups, including Computed Tomography (CT) scans with different races, diseases, phases, and manufacturers. We independently validated that a set of AI algorithms achieved a median Dice Similarity Coefficient (DSC) of 90.0% by using 50 labeled scans and 2000 unlabeled scans, which can significantly reduce annotation requirements. They also enabled automatic extraction of key organ biology features, which was labor-intensive with traditional manual measurements. This opens the potential to use unlabeled data to boost performance and alleviate annotation shortages for modern AI models. Abdominal organs are high cancer incidence areas, such as liver cancer, kidney cancer, pancreas cancer, and gastric cancer [1]. Computed Tomography (CT) scanning has been a major imaging technology for the diagnosis and treatment of abdominal cancer because it can yield important prognostic information with fast imaging speed for cancer patients, which has been recommended by many clinical treatment guidelines. In order to quantify abdominal organs, radiologists and clinicians need to manually delineate organ boundaries in each slice of the 3D CT scans [2], [3]. However, manual segmentation is time-consuming and inherently subjective with inter-and intra-expert variability.


Adaptive Scheduling for Edge-Assisted DNN Serving

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) have been widely used in various video analytic tasks. These tasks demand real-time responses. Due to the limited processing power on mobile devices, a common way to support such real-time analytics is to offload the processing to an edge server. This paper examines how to speed up the edge server DNN processing for multiple clients. In particular, we observe batching multiple DNN requests significantly speeds up the processing time. Based on this observation, we first design a novel scheduling algorithm to exploit the batching benefits of all requests that run the same DNN. This is compelling since there are only a handful of DNNs and many requests tend to use the same DNN. Our algorithms are general and can support different objectives, such as minimizing the completion time or maximizing the on-time ratio. We then extend our algorithm to handle requests that use different DNNs with or without shared layers. Finally, we develop a collaborative approach to further improve performance by adaptively processing some of the requests or portions of the requests locally at the clients. This is especially useful when the network and/or server is congested. Our implementation shows the effectiveness of our approach under different request distributions (e.g., Poisson, Pareto, and Constant inter-arrivals).