Hassoun, Soha
Large Language Model is Secretly a Protein Sequence Optimizer
Wang, Yinkai, He, Jiaxing, Du, Yuanqi, Chen, Xiaohui, Li, Jianan Canal, Liu, Li-Ping, Xu, Xiaolin, Hassoun, Soha
We consider the protein sequence engineering problem, which aims to find protein sequences with high fitness levels, starting from a given wild-type sequence. Directed evolution has been a dominating paradigm in this field which has an iterative process to generate variants and select via experimental feedback. We demonstrate large language models (LLMs), despite being trained on massive texts, are secretly protein sequence optimizers. With a directed evolutionary method, LLM can perform protein engineering through Pareto and experiment-budget constrained optimization, demonstrating success on both synthetic and experimental fitness landscapes. Protein engineering aims to develop novel protein sequences exhibiting improved or new-to-nature functions (Romero & Arnold, 2009).
MADGEN: Mass-Spec attends to De Novo Molecular generation
Wang, Yinkai, Chen, Xiaohui, Liu, Liping, Hassoun, Soha
The annotation (assigning structural chemical identities) of MS/MS spectra remains a significant challenge due to the enormous molecular diversity in biological samples and the limited scope of reference databases. Currently, the vast majority of spectral measurements remain in the "dark chemical space" without structural annotations. To improve annotation, we propose MADGEN (Mass-spec Attends to De Novo Molecular GENeration), a scaffold-based method for de novo molecular structure generation guided by mass spectrometry data. MADGEN operates in two stages: scaffold retrieval and spectra-conditioned molecular generation starting with the scaffold. In the first stage, given an MS/MS spectrum, we formulate scaffold retrieval as a ranking problem and employ contrastive learning to align mass spectra with candidate molecular scaffolds. In the second stage, starting from the retrieved scaffold, we employ the MS/MS spectrum to guide an attention-based generative model to generate the final molecule. Our approach constrains the molecular generation search space, reducing its complexity and improving generation accuracy. We evaluate MADGEN on three datasets (NIST23, CANOPUS, and MassSpecGym) and evaluate MADGEN's performance with a predictive scaffold retriever and with an oracle retriever. We demonstrate the effectiveness of using attention to integrate spectral information throughout the generation process to achieve strong results with the oracle retriever. Metabolomics, the measurement and identification of small molecules in biological samples, plays a critical role in numerous fields, including drug discovery, biomarker discovery, and environmental science.
Graph Generative Pre-trained Transformer
Chen, Xiaohui, Wang, Yinkai, He, Jiaxing, Du, Yuanqi, Hassoun, Soha, Xu, Xiaolin, Liu, Li-Ping
Graph generation is a critical task in numerous domains, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. While most modern graph generative models utilize adjacency matrix representations, this work revisits an alternative approach that represents graphs as sequences of node set and edge set. We advocate for this approach due to its efficient encoding of graphs and propose a novel representation. Based on this representation, we introduce the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model that learns graph structures via next-token prediction. To further exploit G2PT's capabilities as a general-purpose foundation model, we explore fine-tuning strategies for two downstream applications: goal-oriented generation and graph property prediction. We conduct extensive experiments across multiple datasets. Results indicate that G2PT achieves superior generative performance on both generic graph and molecule datasets. Furthermore, G2PT exhibits strong adaptability and versatility in downstream tasks from molecular design to property prediction.
JESTR: Joint Embedding Space Technique for Ranking Candidate Molecules for the Annotation of Untargeted Metabolomics Data
Kalia, Apurva, Krishnan, Dilip, Hassoun, Soha
Motivation: A major challenge in metabolomics is annotation: assigning molecular structures to mass spectral fragmentation patterns. Despite recent advances in molecule-to-spectra and in spectra-to-molecular fingerprint prediction (FP), annotation rates remain low. Results: We introduce in this paper a novel paradigm (JESTR) for annotation. Unlike prior approaches that explicitly construct molecular fingerprints or spectra, JESTR leverages the insight that molecules and their corresponding spectra are views of the same data and effectively embeds their representations in a joint space. Candidate structures are ranked based on cosine similarity between the embeddings of query spectrum and each candidate. We evaluate JESTR against mol-to-spec and spec-to-FP annotation tools on three datasets. On average, for rank@[1-5], JESTR outperforms other tools by 23.6%-71.6%. We further demonstrate the strong value of regularization with candidate molecules during training, boosting rank@1 performance by 11.4% and enhancing the model's ability to discern between target and candidate molecules. Through JESTR, we offer a novel promising avenue towards accurate annotation, therefore unlocking valuable insights into the metabolome.
MassSpecGym: A benchmark for the discovery and identification of molecules
Bushuiev, Roman, Bushuiev, Anton, de Jonge, Niek F., Young, Adamo, Kretschmer, Fleming, Samusevich, Raman, Heirman, Janne, Wang, Fei, Zhang, Luke, Dรผhrkop, Kai, Ludwig, Marcus, Haupt, Nils A., Kalia, Apurva, Brungs, Corinna, Schmid, Robin, Greiner, Russell, Wang, Bo, Wishart, David S., Liu, Li-Ping, Rousu, Juho, Bittremieux, Wout, Rost, Hannes, Mak, Tytus D., Hassoun, Soha, Huber, Florian, van der Hooft, Justin J. J., Stravs, Michael A., Bรถcker, Sebastian, Sivic, Josef, Pluskal, Tomรกลก
The discovery and identification of molecules in biological and environmental samples is crucial for advancing biomedical and chemical sciences. Tandem mass spectrometry (MS/MS) is the leading technique for high-throughput elucidation of molecular structures. However, decoding a molecular structure from its mass spectrum is exceptionally challenging, even when performed by human experts. As a result, the vast majority of acquired MS/MS spectra remain uninterpreted, thereby limiting our understanding of the underlying (bio)chemical processes. Despite decades of progress in machine learning applications for predicting molecular structures from MS/MS spectra, the development of new methods is severely hindered by the lack of standard datasets and evaluation protocols. To address this problem, we propose MassSpecGym -- the first comprehensive benchmark for the discovery and identification of molecules from MS/MS data. Our benchmark comprises the largest publicly available collection of high-quality labeled MS/MS spectra and defines three MS/MS annotation challenges: \textit{de novo} molecular structure generation, molecule retrieval, and spectrum simulation. It includes new evaluation metrics and a generalization-demanding data split, therefore standardizing the MS/MS annotation tasks and rendering the problem accessible to the broad machine learning community. MassSpecGym is publicly available at \url{https://github.com/pluskal-lab/MassSpecGym}.
On Separate Normalization in Self-supervised Transformers
Chen, Xiaohui, Wang, Yinkai, Du, Yuanqi, Hassoun, Soha, Liu, Li-Ping
Self-supervised training methods for transformers have demonstrated remarkable performance across various domains. Previous transformer-based models, such as masked autoencoders (MAE), typically utilize a single normalization layer for both the [CLS] symbol and the tokens. We propose in this paper a simple modification that employs separate normalization layers for the tokens and the [CLS] symbol to better capture their distinct characteristics and enhance downstream task performance. Our method aims to alleviate the potential negative effects of using the same normalization statistics for both token types, which may not be optimally aligned with their individual roles. We empirically show that by utilizing a separate normalization layer, the [CLS] embeddings can better encode the global contextual information and are distributed more uniformly in its anisotropic space. When replacing the conventional normalization layer with the two separate layers, we observe an average 2.7% performance improvement over the image, natural language, and graph domains.
CSI: Contrastive Data Stratification for Interaction Prediction and its Application to Compound-Protein Interaction Prediction
Kalia, Apurva, Krishnan, Dilip, Hassoun, Soha
Motivation: Accurately predicting the likelihood of interaction between two objects (compound-protein sequence, user-item, author-paper, etc.) is a fundamental problem in Computer Science. Current deep-learning models rely on learning accurate representations of the interacting objects. Importantly, relationships between the interacting objects, or features of the interaction, offer an opportunity to partition the data to create multi-views of the interacting objects. The resulting congruent and non-congruent views can then be exploited via contrastive learning techniques to learn enhanced representations of the objects. Results: We present a novel method, Contrastive Stratification for Interaction Prediction (CSI), to stratify (partition) a dataset in a manner that can be exploited via Contrastive Multiview Coding (CMC) to learn embeddings that maximize the mutual information across congruent data views. CSI assigns a key and multiple views to each data point, where data partitions under a particular key form congruent views of the data. We showcase the effectiveness of CSI by applying it to the compound-protein sequence interaction prediction problem, a pressing problem whose solution promises to expedite drug delivery (drugprotein interaction prediction), metabolic engineering and synthetic biology (compound-enzyme interaction prediction) applications. Comparing CSI with a baseline model that does not utilize data stratification and contrastive learning, and show gains in Average Precision ranging from 13.7% to 39% using compounds and sequences as keys across multiple drug-target and enzymatic datasets, and gains ranging from 16.9% to 63% using reaction features as keys across enzymatic datasets.
Stochastic Iterative Graph Matching
Liu, Linfeng, Hughes, Michael C., Hassoun, Soha, Liu, Li-Ping
Recent works leveraging Graph Neural Networks to approach graph matching tasks have shown promising results. Recent progress in learning discrete distributions poses new opportunities for learning graph matching models. In this work, we propose a new model, Stochastic Iterative Graph MAtching (SIGMA), to address the graph matching problem. Our model defines a distribution of matchings for a graph pair so the model can explore a wide range of possible matchings. We further introduce a novel multi-step matching procedure, which learns how to refine a graph pair's matching results incrementally. The model also includes dummy nodes so that the model does not have to find matchings for nodes without correspondence. We fit this model to data via scalable stochastic optimization. We conduct extensive experiments across synthetic graph datasets as well as biochemistry and computer vision applications. Across all tasks, our results show that SIGMA can produce significantly improved graph matching results compared to state-of-the-art models. Ablation studies verify that each of our components (stochastic training, iterative matching, and dummy nodes) offers noticeable improvement.