Goto

Collaborating Authors

 Haslum, Johan Fredin


k-NN as a Simple and Effective Estimator of Transferability

arXiv.org Artificial Intelligence

How well can one expect transfer learning to work in a new setting where the domain is shifted, the task is different, and the architecture changes? Many transfer learning metrics have been proposed to answer this question. But how accurate are their predictions in a realistic new setting? We conducted an extensive evaluation involving over 42,000 experiments comparing 23 transferability metrics across 16 different datasets to assess their ability to predict transfer performance. Our findings reveal that none of the existing metrics perform well across the board. However, we find that a simple k-nearest neighbor evaluation -- as is commonly used to evaluate feature quality for self-supervision -- not only surpasses existing metrics, but also offers better computational efficiency and ease of implementation.


Adding Seemingly Uninformative Labels Helps in Low Data Regimes

arXiv.org Machine Learning

Evidence suggests that networks trained on large datasets generalize well not solely because of the numerous training examples, but also class diversity which encourages learning of enriched features. This raises the question of whether this remains true when data is scarce - is there an advantage to learning with additional labels in low-data regimes? In this work, we consider a task that requires difficult-to-obtain expert annotations: tumor segmentation in mammography images. We show that, in low-data settings, performance can be improved by complementing the expert annotations with seemingly uninformative labels from non-expert annotators, turning the task into a multi-class problem. We reveal that these gains increase when less expert data is available, and uncover several interesting properties through further studies. We demonstrate our findings on CSAW-S, a new dataset that we introduce here, and confirm them on two public datasets.