Harrop, Bryce
A non-intrusive machine learning framework for debiasing long-time coarse resolution climate simulations and quantifying rare events statistics
Sorensen, Benedikt Barthel, Charalampopoulos, Alexis, Zhang, Shixuan, Harrop, Bryce, Leung, Ruby, Sapsis, Themistoklis
Due to the rapidly changing climate, the frequency and severity of extreme weather is expected to increase over the coming decades. As fully-resolved climate simulations remain computationally intractable, policy makers must rely on coarse-models to quantify risk for extremes. However, coarse models suffer from inherent bias due to the ignored "sub-grid" scales. We propose a framework to non-intrusively debias coarse-resolution climate predictions using neural-network (NN) correction operators. Previous efforts have attempted to train such operators using loss functions that match statistics. However, this approach falls short with events that have longer return period than that of the training data, since the reference statistics have not converged. Here, the scope is to formulate a learning method that allows for correction of dynamics and quantification of extreme events with longer return period than the training data. The key obstacle is the chaotic nature of the underlying dynamics. To overcome this challenge, we introduce a dynamical systems approach where the correction operator is trained using reference data and a coarse model simulation nudged towards that reference. The method is demonstrated on debiasing an under-resolved quasi-geostrophic model and the Energy Exascale Earth System Model (E3SM). For the former, our method enables the quantification of events that have return period two orders longer than the training data. For the latter, when trained on 8 years of ERA5 data, our approach is able to correct the coarse E3SM output to closely reflect the 36-year ERA5 statistics for all prognostic variables and significantly reduce their spatial biases.
ClimSim: A large multi-scale dataset for hybrid physics-ML climate emulation
Yu, Sungduk, Hannah, Walter, Peng, Liran, Lin, Jerry, Bhouri, Mohamed Aziz, Gupta, Ritwik, Lütjens, Björn, Will, Justus Christopher, Behrens, Gunnar, Busecke, Julius, Loose, Nora, Stern, Charles I, Beucler, Tom, Harrop, Bryce, Hillman, Benjamin R, Jenney, Andrea, Ferretti, Savannah, Liu, Nana, Anandkumar, Anima, Brenowitz, Noah D, Eyring, Veronika, Geneva, Nicholas, Gentine, Pierre, Mandt, Stephan, Pathak, Jaideep, Subramaniam, Akshay, Vondrick, Carl, Yu, Rose, Zanna, Laure, Zheng, Tian, Abernathey, Ryan, Ahmed, Fiaz, Bader, David C, Baldi, Pierre, Barnes, Elizabeth, Bretherton, Christopher, Caldwell, Peter, Chuang, Wayne, Han, Yilun, Huang, Yu, Iglesias-Suarez, Fernando, Jantre, Sanket, Kashinath, Karthik, Khairoutdinov, Marat, Kurth, Thorsten, Lutsko, Nicholas, Ma, Po-Lun, Mooers, Griffin, Neelin, J. David, Randall, David, Shamekh, Sara, Taylor, Mark A, Urban, Nathan, Yuval, Janni, Zhang, Guang, Pritchard, Michael
Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state. The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring.
Learning bias corrections for climate models using deep neural operators
Bora, Aniruddha, Shukla, Khemraj, Zhang, Shixuan, Harrop, Bryce, Leung, Ruby, Karniadakis, George Em
Numerical simulation for climate modeling resolving all important scales is a computationally taxing process. Therefore, to circumvent this issue a low resolution simulation is performed, which is subsequently corrected for bias using reanalyzed data (ERA5), known as nudging correction. The existing implementation for nudging correction uses a relaxation based method for the algebraic difference between low resolution and ERA5 data. In this study, we replace the bias correction process with a surrogate model based on the Deep Operator Network (DeepONet). DeepONet (Deep Operator Neural Network) learns the mapping from the state before nudging (a functional) to the nudging tendency (another functional). The nudging tendency is a very high dimensional data albeit having many low energy modes. Therefore, the DeepoNet is combined with a convolution based auto-encoder-decoder (AED) architecture in order to learn the nudging tendency in a lower dimensional latent space efficiently. The accuracy of the DeepONet model is tested against the nudging tendency obtained from the E3SMv2 (Energy Exascale Earth System Model) and shows good agreement. The overarching goal of this work is to deploy the DeepONet model in an online setting and replace the nudging module in the E3SM loop for better efficiency and accuracy.