Haque, Anwar
Weakly-Supervised Anomaly Detection in Surveillance Videos Based on Two-Stream I3D Convolution Network
Nejad, Sareh Soltani, Haque, Anwar
The widespread implementation of urban surveillance systems has necessitated more sophisticated techniques for anomaly detection to ensure enhanced public safety. This paper presents a significant advancement in the field of anomaly detection through the application of Two-Stream Inflated 3D (I3D) Convolutional Networks. These networks substantially outperform traditional 3D Convolutional Networks (C3D) by more effectively extracting spatial and temporal features from surveillance videos, thus improving the precision of anomaly detection. Our research advances the field by implementing a weakly supervised learning framework based on Multiple Instance Learning (MIL), which uniquely conceptualizes surveillance videos as collections of 'bags' that contain instances (video clips). Each instance is innovatively processed through a ranking mechanism that prioritizes clips based on their potential to display anomalies. This novel strategy not only enhances the accuracy and precision of anomaly detection but also significantly diminishes the dependency on extensive manual annotations. Moreover, through meticulous optimization of model settings, including the choice of optimizer, our approach not only establishes new benchmarks in the performance of anomaly detection systems but also offers a scalable and efficient solution for real-world surveillance applications. This paper contributes significantly to the field of computer vision by delivering a more adaptable, efficient, and context-aware anomaly detection system, which is poised to redefine practices in urban surveillance.
Intelligent Routing Algorithm over SDN: Reusable Reinforcement Learning Approach
Wumian, Wang, Saha, Sajal, Haque, Anwar, Sidebottom, Greg
Traffic routing is vital for the proper functioning of the Internet. As users and network traffic increase, researchers try to develop adaptive and intelligent routing algorithms that can fulfill various QoS requirements. Reinforcement Learning (RL) based routing algorithms have shown better performance than traditional approaches. We developed a QoS-aware, reusable RL routing algorithm, RLSR-Routing over SDN. During the learning process, our algorithm ensures loop-free path exploration. While finding the path for one traffic demand (a source destination pair with certain amount of traffic), RLSR-Routing learns the overall network QoS status, which can be used to speed up algorithm convergence when finding the path for other traffic demands. By adapting Segment Routing, our algorithm can achieve flow-based, source packet routing, and reduce communications required between SDN controller and network plane. Our algorithm shows better performance in terms of load balancing than the traditional approaches. It also has faster convergence than the non-reusable RL approach when finding paths for multiple traffic demands.
An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs
Baral, Sudipto, Saha, Sajal, Haque, Anwar
The exponential growth of the Internet of Things (IoT) has significantly increased the complexity and volume of cybersecurity threats, necessitating the development of advanced, scalable, and interpretable security frameworks. This paper presents an innovative, comprehensive framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM). By integrating XAI techniques such as SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) with a model-independent architecture, we ensure our framework's adaptability across various ML algorithms. Additionally, the incorporation of LLMs enhances the interpretability and accessibility of detection decisions, providing system administrators with actionable, human-understandable explanations of detected threats. Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research. Based on our experiments with the CIC-IOT-2023 dataset \cite{neto2023ciciot2023}, Gemini and OPENAI LLMS demonstrate unique strengths in attack mitigation: Gemini offers precise, focused strategies, while OPENAI provides extensive, in-depth security measures. Incorporating SHAP and LIME algorithms within XAI provides comprehensive insights into attack detection, emphasizing opportunities for model improvement through detailed feature analysis, fine-tuning, and the adaptation of misclassifications to enhance accuracy.
Overcoming Data Limitations in Internet Traffic Forecasting: LSTM Models with Transfer Learning and Wavelet Augmentation
Saha, Sajal, Haque, Anwar, Sidebottom, Greg
Effective internet traffic prediction in smaller ISP networks is challenged by limited data availability. This paper explores this issue using transfer learning and data augmentation techniques with two LSTM-based models, LSTMSeq2Seq and LSTMSeq2SeqAtn, initially trained on a comprehensive dataset provided by Juniper Networks and subsequently applied to smaller datasets. The datasets represent real internet traffic telemetry, offering insights into diverse traffic patterns across different network domains. Our study revealed that while both models performed well in single-step predictions, multi-step forecasts were challenging, particularly in terms of long-term accuracy. In smaller datasets, LSTMSeq2Seq generally outperformed LSTMSeq2SeqAtn, indicating that higher model complexity does not necessarily translate to better performance. The models' effectiveness varied across different network domains, reflecting the influence of distinct traffic characteristics. To address data scarcity, Discrete Wavelet Transform was used for data augmentation, leading to significant improvements in model performance, especially in shorter-term forecasts. Our analysis showed that data augmentation is crucial in scenarios with limited data. Additionally, the study included an analysis of the models' variability and consistency, with attention mechanisms in LSTMSeq2SeqAtn providing better short-term forecasting consistency but greater variability in longer forecasts. The results highlight the benefits and limitations of different modeling approaches in traffic prediction. Overall, this research underscores the importance of transfer learning and data augmentation in enhancing the accuracy of traffic prediction models, particularly in smaller ISP networks with limited data availability.
DEK-Forecaster: A Novel Deep Learning Model Integrated with EMD-KNN for Traffic Prediction
Saha, Sajal, Baral, Sudipto, Haque, Anwar
Internet traffic volume estimation has a significant impact on the business policies of the ISP (Internet Service Provider) industry and business successions. Forecasting the internet traffic demand helps to shed light on the future traffic trend, which is often helpful for ISPs decision-making in network planning activities and investments. Besides, the capability to understand future trend contributes to managing regular and long-term operations. This study aims to predict the network traffic volume demand using deep sequence methods that incorporate Empirical Mode Decomposition (EMD) based noise reduction, Empirical rule based outlier detection, and $K$-Nearest Neighbour (KNN) based outlier mitigation. In contrast to the former studies, the proposed model does not rely on a particular EMD decomposed component called Intrinsic Mode Function (IMF) for signal denoising. In our proposed traffic prediction model, we used an average of all IMFs components for signal denoising. Moreover, the abnormal data points are replaced by $K$ nearest data points average, and the value for $K$ has been optimized based on the KNN regressor prediction error measured in Root Mean Squared Error (RMSE). Finally, we selected the best time-lagged feature subset for our prediction model based on AutoRegressive Integrated Moving Average (ARIMA) and Akaike Information Criterion (AIC) value. Our experiments are conducted on real-world internet traffic datasets from industry, and the proposed method is compared with various traditional deep sequence baseline models. Our results show that the proposed EMD-KNN integrated prediction models outperform comparative models.
DRL-GAN: A Hybrid Approach for Binary and Multiclass Network Intrusion Detection
Strickland, Caroline, Saha, Chandrika, Zakar, Muhammad, Nejad, Sareh, Tasnim, Noshin, Lizotte, Daniel, Haque, Anwar
Our increasingly connected world continues to face an ever-growing amount of network-based attacks. Intrusion detection systems (IDS) are an essential security technology for detecting these attacks. Although numerous machine learning-based IDS have been proposed for the detection of malicious network traffic, the majority have difficulty properly detecting and classifying the more uncommon attack types. In this paper, we implement a novel hybrid technique using synthetic data produced by a Generative Adversarial Network (GAN) to use as input for training a Deep Reinforcement Learning (DRL) model. Our GAN model is trained with the NSL-KDD dataset for four attack categories as well as normal network flow. Ultimately, our findings demonstrate that training the DRL on specific synthetic datasets can result in better performance in correctly classifying minority classes over training on the true imbalanced dataset.
Appliance Operation Modes Identification Using Cycles Clustering
Jaradat, Abdelkareem, Lutfiyya, Hanan, Haque, Anwar
The increasing cost, energy demand, and environmental issues has led many researchers to find approaches for energy monitoring, and hence energy conservation. The emerging technologies of Internet of Things (IoT) and Machine Learning (ML) deliver techniques that have the potential to efficiently conserve energy and improve the utilization of energy consumption. Smart Home Energy Management Systems (SHEMSs) have the potential to contribute in energy conservation through the application of Demand Response (DR) in the residential sector. In this paper, we propose appliances Operation Modes Identification using Cycles Clustering (OMICC) which is SHEMS fundamental approach that utilizes the sensed residential disaggregated power consumption in supporting DR by providing consumers the opportunity to select lighter appliance operation modes. The cycles of the Single Usage Profile (SUP) of an appliance are extracted and reformed into features in terms of clusters of cycles. These features are then used to identify the operation mode used in every occurrence using K-Nearest Neighbors (KNN). Operation modes identification is considered a basis for many potential smart DR applications within SHEMS towards the consumers or the suppliers