Hamamci, Ibrahim Ethem
TopCoW: Benchmarking Topology-Aware Anatomical Segmentation of the Circle of Willis (CoW) for CTA and MRA
Yang, Kaiyuan, Musio, Fabio, Ma, Yihui, Juchler, Norman, Paetzold, Johannes C., Al-Maskari, Rami, Höher, Luciano, Li, Hongwei Bran, Hamamci, Ibrahim Ethem, Sekuboyina, Anjany, Shit, Suprosanna, Huang, Houjing, Waldmannstetter, Diana, Kofler, Florian, Navarro, Fernando, Menten, Martin, Ezhov, Ivan, Rueckert, Daniel, Vos, Iris, Ruigrok, Ynte, Velthuis, Birgitta, Kuijf, Hugo, Hämmerli, Julien, Wurster, Catherine, Bijlenga, Philippe, Westphal, Laura, Bisschop, Jeroen, Colombo, Elisa, Baazaoui, Hakim, Makmur, Andrew, Hallinan, James, Wiestler, Bene, Kirschke, Jan S., Wiest, Roland, Montagnon, Emmanuel, Letourneau-Guillon, Laurent, Galdran, Adrian, Galati, Francesco, Falcetta, Daniele, Zuluaga, Maria A., Lin, Chaolong, Zhao, Haoran, Zhang, Zehan, Ra, Sinyoung, Hwang, Jongyun, Park, Hyunjin, Chen, Junqiang, Wodzinski, Marek, Müller, Henning, Shi, Pengcheng, Liu, Wei, Ma, Ting, Yalçin, Cansu, Hamadache, Rachika E., Salvi, Joaquim, Llado, Xavier, Estrada, Uma Maria Lal-Trehan, Abramova, Valeriia, Giancardo, Luca, Oliver, Arnau, Liu, Jialu, Huang, Haibin, Cui, Yue, Lin, Zehang, Liu, Yusheng, Zhu, Shunzhi, Patel, Tatsat R., Tutino, Vincent M., Orouskhani, Maysam, Wang, Huayu, Mossa-Basha, Mahmud, Zhu, Chengcheng, Rokuss, Maximilian R., Kirchhoff, Yannick, Disch, Nico, Holzschuh, Julius, Isensee, Fabian, Maier-Hein, Klaus, Sato, Yuki, Hirsch, Sven, Wegener, Susanne, Menze, Bjoern
The Circle of Willis (CoW) is an important network of arteries connecting major circulations of the brain. Its vascular architecture is believed to affect the risk, severity, and clinical outcome of serious neuro-vascular diseases. However, characterizing the highly variable CoW anatomy is still a manual and time-consuming expert task. The CoW is usually imaged by two angiographic imaging modalities, magnetic resonance angiography (MRA) and computed tomography angiography (CTA), but there exist limited public datasets with annotations on CoW anatomy, especially for CTA. Therefore we organized the TopCoW Challenge in 2023 with the release of an annotated CoW dataset. The TopCoW dataset was the first public dataset with voxel-level annotations for thirteen possible CoW vessel components, enabled by virtual-reality (VR) technology. It was also the first large dataset with paired MRA and CTA from the same patients. TopCoW challenge formalized the CoW characterization problem as a multiclass anatomical segmentation task with an emphasis on topological metrics. We invited submissions worldwide for the CoW segmentation task, which attracted over 140 registered participants from four continents. The top performing teams managed to segment many CoW components to Dice scores around 90%, but with lower scores for communicating arteries and rare variants. There were also topological mistakes for predictions with high Dice scores. Additional topological analysis revealed further areas for improvement in detecting certain CoW components and matching CoW variant topology accurately. TopCoW represented a first attempt at benchmarking the CoW anatomical segmentation task for MRA and CTA, both morphologically and topologically.
Synthesizing Missing MRI Sequences from Available Modalities using Generative Adversarial Networks in BraTS Dataset
Hamamci, Ibrahim Ethem
Glioblastoma is a highly aggressive and lethal form of brain cancer. Magnetic resonance imaging (MRI) plays a significant role in the diagnosis, treatment planning, and follow-up of glioblastoma patients due to its non-invasive and radiation-free nature. The International Brain Tumor Segmentation (BraTS) challenge has contributed to generating numerous AI algorithms to accurately and efficiently segment glioblastoma sub-compartments using four structural (T1, T1Gd, T2, T2-FLAIR) MRI scans. However, these four MRI sequences may not always be available. To address this issue, Generative Adversarial Networks (GANs) can be used to synthesize the missing MRI sequences. In this paper, we implement and utilize an open-source GAN approach that takes any three MRI sequences as input to generate the missing fourth structural sequence. Our proposed approach is contributed to the community-driven generally nuanced deep learning framework (GaNDLF) and demonstrates promising results in synthesizing high-quality and realistic MRI sequences, enabling clinicians to improve their diagnostic capabilities and support the application of AI methods to brain tumor MRI quantification.