Goto

Collaborating Authors

 Hakimi, Shabnam


Learning to Represent Individual Differences for Choice Decision Making

arXiv.org Artificial Intelligence

Human decision making can be challenging to predict because decisions are affected by a number of complex factors. Adding to this complexity, decision-making processes can differ considerably between individuals, and methods aimed at predicting human decisions need to take individual differences into account. Behavioral science offers methods by which to measure individual differences (e.g., questionnaires, behavioral models), but these are often narrowed down to low dimensions and not tailored to specific prediction tasks. This paper investigates the use of representation learning to measure individual differences from behavioral experiment data. Representation learning offers a flexible approach to create individual embeddings from data that are both structured (e.g., demographic information) and unstructured (e.g., free text), where the flexibility provides more options for individual difference measures for personalization, e.g., free text responses may allow for open-ended questions that are less privacy-sensitive. In the current paper we use representation learning to characterize individual differences in human performance on an economic decision-making task. We demonstrate that models using representation learning to capture individual differences consistently improve decision predictions over models without representation learning, and even outperform well-known theory-based behavioral models used in these environments. Our results propose that representation learning offers a useful and flexible tool to capture individual differences.


ConjointNet: Enhancing Conjoint Analysis for Preference Prediction with Representation Learning

arXiv.org Artificial Intelligence

Understanding consumer preferences is essential to product design and predicting market response to these new products. Choice-based conjoint analysis is widely used to model user preferences using their choices in surveys. However, traditional conjoint estimation techniques assume simple linear models. This assumption may lead to limited predictability and inaccurate estimation of product attribute contributions, especially on data that has underlying non-linear relationships. In this work, we employ representation learning to efficiently alleviate this issue. We propose ConjointNet, which is composed of two novel neural architectures, to predict user preferences. We demonstrate that the proposed ConjointNet models outperform traditional conjoint estimate techniques on two preference datasets by over 5%, and offer insights into non-linear feature interactions.


Understanding the Cognitive Complexity in Language Elicited by Product Images

arXiv.org Artificial Intelligence

Product images (e.g., a phone) can be used to elicit a diverse set of consumer-reported features expressed through language, including surface-level perceptual attributes (e.g., "white") and more complex ones, like perceived utility (e.g., "battery"). The cognitive complexity of elicited language reveals the nature of cognitive processes and the context required to understand them; cognitive complexity also predicts consumers' subsequent choices. This work offers an approach for measuring and validating the cognitive complexity of human language elicited by product images, providing a tool for understanding the cognitive processes of human as well as virtual respondents simulated by Large Language Models (LLMs). We also introduce a large dataset that includes diverse descriptive labels for product images, including human-rated complexity. We demonstrate that human-rated cognitive complexity can be approximated using a set of natural language models that, combined, roughly capture the complexity construct. Moreover, this approach is minimally supervised and scalable, even in use cases with limited human assessment of complexity.


Learning Latent Traits for Simulated Cooperative Driving Tasks

arXiv.org Artificial Intelligence

To construct effective teaming strategies between humans and AI systems in complex, risky situations requires an understanding of individual preferences and behaviors of humans. Previously this problem has been treated in case-specific or data-agnostic ways. In this paper, we build a framework capable of capturing a compact latent representation of the human in terms of their behavior and preferences based on data from a simulated population of drivers. Our framework leverages, to the extent available, knowledge of individual preferences and types from samples within the population to deploy interaction policies appropriate for specific drivers. We then build a lightweight simulation environment, HMIway-env, for modelling one form of distracted driving behavior, and use it to generate data for different driver types and train intervention policies. We finally use this environment to quantify both the ability to discriminate drivers and the effectiveness of intervention policies.