Haghifam, Mahdi
On the Dichotomy Between Privacy and Traceability in $\ell_p$ Stochastic Convex Optimization
Voitovych, Sasha, Haghifam, Mahdi, Attias, Idan, Dziugaite, Gintare Karolina, Livni, Roi, Roy, Daniel M.
In this paper, we investigate the necessity of memorization in stochastic convex optimization (SCO) under $\ell_p$ geometries. Informally, we say a learning algorithm memorizes $m$ samples (or is $m$-traceable) if, by analyzing its output, it is possible to identify at least $m$ of its training samples. Our main results uncover a fundamental tradeoff between traceability and excess risk in SCO. For every $p\in [1,\infty)$, we establish the existence of a risk threshold below which any sample-efficient learner must memorize a \em{constant fraction} of its sample. For $p\in [1,2]$, this threshold coincides with best risk of differentially private (DP) algorithms, i.e., above this threshold, there are algorithms that do not memorize even a single sample. This establishes a sharp dichotomy between privacy and traceability for $p \in [1,2]$. For $p \in (2,\infty)$, this threshold instead gives novel lower bounds for DP learning, partially closing an open problem in this setup. En route of proving these results, we introduce a complexity notion we term \em{trace value} of a problem, which unifies privacy lower bounds and traceability results, and prove a sparse variant of the fingerprinting lemma.
Private Geometric Median
Haghifam, Mahdi, Steinke, Thomas, Ullman, Jonathan
In this paper, we study differentially private (DP) algorithms for computing the geometric median (GM) of a dataset: Given $n$ points, $x_1,\dots,x_n$ in $\mathbb{R}^d$, the goal is to find a point $\theta$ that minimizes the sum of the Euclidean distances to these points, i.e., $\sum_{i=1}^{n} \|\theta - x_i\|_2$. Off-the-shelf methods, such as DP-GD, require strong a priori knowledge locating the data within a ball of radius $R$, and the excess risk of the algorithm depends linearly on $R$. In this paper, we ask: can we design an efficient and private algorithm with an excess error guarantee that scales with the (unknown) radius containing the majority of the datapoints? Our main contribution is a pair of polynomial-time DP algorithms for the task of private GM with an excess error guarantee that scales with the effective diameter of the datapoints. Additionally, we propose an inefficient algorithm based on the inverse smooth sensitivity mechanism, which satisfies the more restrictive notion of pure DP. We complement our results with a lower bound and demonstrate the optimality of our polynomial-time algorithms in terms of sample complexity.
Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization
Attias, Idan, Dziugaite, Gintare Karolina, Haghifam, Mahdi, Livni, Roi, Roy, Daniel M.
In this work, we investigate the interplay between memorization and learning in the context of \emph{stochastic convex optimization} (SCO). We define memorization via the information a learning algorithm reveals about its training data points. We then quantify this information using the framework of conditional mutual information (CMI) proposed by Steinke and Zakynthinou (2020). Our main result is a precise characterization of the tradeoff between the accuracy of a learning algorithm and its CMI, answering an open question posed by Livni (2023). We show that, in the $L^2$ Lipschitz--bounded setting and under strong convexity, every learner with an excess error $\varepsilon$ has CMI bounded below by $\Omega(1/\varepsilon^2)$ and $\Omega(1/\varepsilon)$, respectively. We further demonstrate the essential role of memorization in learning problems in SCO by designing an adversary capable of accurately identifying a significant fraction of the training samples in specific SCO problems. Finally, we enumerate several implications of our results, such as a limitation of generalization bounds based on CMI and the incompressibility of samples in SCO problems.
Limitations of Information-Theoretic Generalization Bounds for Gradient Descent Methods in Stochastic Convex Optimization
Haghifam, Mahdi, Rodrรญguez-Gรกlvez, Borja, Thobaben, Ragnar, Skoglund, Mikael, Roy, Daniel M., Dziugaite, Gintare Karolina
To date, no "information-theoretic" frameworks for reasoning about generalization error have been shown to establish minimax rates for gradient descent in the setting of stochastic convex optimization. In this work, we consider the prospect of establishing such rates via several existing information-theoretic frameworks: input-output mutual information bounds, conditional mutual information bounds and variants, PAC-Bayes bounds, and recent conditional variants thereof. We prove that none of these bounds are able to establish minimax rates. We then consider a common tactic employed in studying gradient methods, whereby the final iterate is corrupted by Gaussian noise, producing a noisy "surrogate" algorithm. We prove that minimax rates cannot be established via the analysis of such surrogates. Our results suggest that new ideas are required to analyze gradient descent using information-theoretic techniques.
Faster Differentially Private Convex Optimization via Second-Order Methods
Ganesh, Arun, Haghifam, Mahdi, Steinke, Thomas, Thakurta, Abhradeep
Differentially private (stochastic) gradient descent is the workhorse of DP private machine learning in both the convex and non-convex settings. Without privacy constraints, second-order methods, like Newton's method, converge faster than first-order methods like gradient descent. In this work, we investigate the prospect of using the second-order information from the loss function to accelerate DP convex optimization. We first develop a private variant of the regularized cubic Newton method of Nesterov and Polyak, and show that for the class of strongly convex loss functions, our algorithm has quadratic convergence and achieves the optimal excess loss. We then design a practical second-order DP algorithm for the unconstrained logistic regression problem. We theoretically and empirically study the performance of our algorithm. Empirical results show our algorithm consistently achieves the best excess loss compared to other baselines and is 10-40x faster than DP-GD/DP-SGD.
Why Is Public Pretraining Necessary for Private Model Training?
Ganesh, Arun, Haghifam, Mahdi, Nasr, Milad, Oh, Sewoong, Steinke, Thomas, Thakkar, Om, Thakurta, Abhradeep, Wang, Lun
In the privacy-utility tradeoff of a model trained on benchmark language and vision tasks, remarkable improvements have been widely reported with the use of pretraining on publicly available data. This is in part due to the benefits of transfer learning, which is the standard motivation for pretraining in non-private settings. However, the stark contrast in the improvement achieved through pretraining under privacy compared to non-private settings suggests that there may be a deeper, distinct cause driving these gains. To explain this phenomenon, we hypothesize that the non-convex loss landscape of a model training necessitates an optimization algorithm to go through two phases. In the first, the algorithm needs to select a good "basin" in the loss landscape. In the second, the algorithm solves an easy optimization within that basin. The former is a harder problem to solve with private data, while the latter is harder to solve with public data due to a distribution shift or data scarcity. Guided by this intuition, we provide theoretical constructions that provably demonstrate the separation between private training with and without public pretraining. Further, systematic experiments on CIFAR10 and LibriSpeech provide supporting evidence for our hypothesis.
Towards a Unified Information-Theoretic Framework for Generalization
Haghifam, Mahdi, Dziugaite, Gintare Karolina, Moran, Shay, Roy, Daniel M.
In this work, we investigate the expressiveness of the "conditional mutual information" (CMI) framework of Steinke and Zakynthinou (2020) and the prospect of using it to provide a unified framework for proving generalization bounds in the realizable setting. We first demonstrate that one can use this framework to express non-trivial (but sub-optimal) bounds for any learning algorithm that outputs hypotheses from a class of bounded VC dimension. We prove that the CMI framework yields the optimal bound on the expected risk of Support Vector Machines (SVMs) for learning halfspaces. This result is an application of our general result showing that stable compression schemes Bousquet al. (2020) of size $k$ have uniformly bounded CMI of order $O(k)$. We further show that an inherent limitation of proper learning of VC classes contradicts the existence of a proper learner with constant CMI, and it implies a negative resolution to an open problem of Steinke and Zakynthinou (2020). We further study the CMI of empirical risk minimizers (ERMs) of class $H$ and show that it is possible to output all consistent classifiers (version space) with bounded CMI if and only if $H$ has a bounded star number (Hanneke and Yang (2015)). Moreover, we prove a general reduction showing that "leave-one-out" analysis is expressible via the CMI framework. As a corollary we investigate the CMI of the one-inclusion-graph algorithm proposed by Haussler et al. (1994). More generally, we show that the CMI framework is universal in the sense that for every consistent algorithm and data distribution, the expected risk vanishes as the number of samples diverges if and only if its evaluated CMI has sublinear growth with the number of samples.
Sharpened Generalization Bounds based on Conditional Mutual Information and an Application to Noisy, Iterative Algorithms
Haghifam, Mahdi, Negrea, Jeffrey, Khisti, Ashish, Roy, Daniel M., Dziugaite, Gintare Karolina
The information-theoretic framework of Russo and J. Zou (2016) and Xu and Raginsky (2017) provides bounds on the generalization error of a learning algorithm in terms of the mutual information between the algorithm's output and the training sample. In this work, we study the proposal, by Steinke and Zakynthinou (2020), to reason about the generalization error of a learning algorithm by introducing a super sample that contains the training sample as a random subset and computing mutual information conditional on the super sample. We first show that these new bounds based on the conditional mutual information are tighter than those based on the unconditional mutual information. We then introduce yet tighter bounds, building on the "individual sample" idea of Bu, S. Zou, and Veeravalli (2019) and the "data dependent" ideas of Negrea et al. (2019), using disintegrated mutual information. Finally, we apply these bounds to the study of Langevin dynamics algorithm, showing that conditioning on the super sample allows us to exploit information in the optimization trajectory to obtain tighter bounds based on hypothesis tests.