Goto

Collaborating Authors

 Gupta, Abhishek


Tackling Combinatorial Distribution Shift: A Matrix Completion Perspective

arXiv.org Artificial Intelligence

Obtaining rigorous statistical guarantees for generalization under distribution shift remains an open and active research area. We study a setting we call combinatorial distribution shift, where (a) under the test- and training-distributions, the labels $z$ are determined by pairs of features $(x,y)$, (b) the training distribution has coverage of certain marginal distributions over $x$ and $y$ separately, but (c) the test distribution involves examples from a product distribution over $(x,y)$ that is {not} covered by the training distribution. Focusing on the special case where the labels are given by bilinear embeddings into a Hilbert space $H$: $\mathbb{E}[z \mid x,y ]=\langle f_{\star}(x),g_{\star}(y)\rangle_{{H}}$, we aim to extrapolate to a test distribution domain that is $not$ covered in training, i.e., achieving bilinear combinatorial extrapolation. Our setting generalizes a special case of matrix completion from missing-not-at-random data, for which all existing results require the ground-truth matrices to be either exactly low-rank, or to exhibit very sharp spectral cutoffs. In this work, we develop a series of theoretical results that enable bilinear combinatorial extrapolation under gradual spectral decay as observed in typical high-dimensional data, including novel algorithms, generalization guarantees, and linear-algebraic results. A key tool is a novel perturbation bound for the rank-$k$ singular value decomposition approximations between two matrices that depends on the relative spectral gap rather than the absolute spectral gap, a result that may be of broader independent interest.


Breadcrumbs to the Goal: Goal-Conditioned Exploration from Human-in-the-Loop Feedback

arXiv.org Artificial Intelligence

Exploration and reward specification are fundamental and intertwined challenges for reinforcement learning. Solving sequential decision-making tasks requiring expansive exploration requires either careful design of reward functions or the use of novelty-seeking exploration bonuses. Human supervisors can provide effective guidance in the loop to direct the exploration process, but prior methods to leverage this guidance require constant synchronous high-quality human feedback, which is expensive and impractical to obtain. In this work, we present a technique called Human Guided Exploration (HuGE), which uses low-quality feedback from non-expert users that may be sporadic, asynchronous, and noisy. HuGE guides exploration for reinforcement learning not only in simulation but also in the real world, all without meticulous reward specification. The key concept involves bifurcating human feedback and policy learning: human feedback steers exploration, while self-supervised learning from the exploration data yields unbiased policies. This procedure can leverage noisy, asynchronous human feedback to learn policies with no hand-crafted reward design or exploration bonuses. HuGE is able to learn a variety of challenging multi-stage robotic navigation and manipulation tasks in simulation using crowdsourced feedback from non-expert users. Moreover, this paradigm can be scaled to learning directly on real-world robots, using occasional, asynchronous feedback from human supervisors.


Distributionally Adaptive Meta Reinforcement Learning

arXiv.org Artificial Intelligence

Meta-reinforcement learning algorithms provide a data-driven way to acquire policies that quickly adapt to many tasks with varying rewards or dynamics functions. However, learned meta-policies are often effective only on the exact task distribution on which they were trained and struggle in the presence of distribution shift of test-time rewards or transition dynamics. In this work, we develop a framework for meta-RL algorithms that are able to behave appropriately under test-time distribution shifts in the space of tasks. Our framework centers on an adaptive approach to distributional robustness that trains a population of meta-policies to be robust to varying levels of distribution shift. When evaluated on a potentially shifted test-time distribution of tasks, this allows us to choose the meta-policy with the most appropriate level of robustness, and use it to perform fast adaptation. We formally show how our framework allows for improved regret under distribution shift, and empirically show its efficacy on simulated robotics problems under a wide range of distribution shifts.


Cobalt: Optimizing Mining Rewards in Proof-of-Work Network Games

arXiv.org Artificial Intelligence

Mining in proof-of-work blockchains has become an expensive affair requiring specialized hardware capable of executing several megahashes per second at huge electricity costs. Miners earn a reward each time they mine a block within the longest chain, which helps offset their mining costs. It is therefore of interest to miners to maximize the number of mined blocks in the blockchain and increase revenue. A key factor affecting mining rewards earned is the connectivity between miners in the peer-to-peer network. To maximize rewards a miner must choose its network connections carefully, ensuring existence of paths to other miners that are on average of a lower latency compared to paths between other miners. We formulate the problem of deciding whom to connect to for miners as a combinatorial bandit problem. Each node picks its neighbors strategically to minimize the latency to reach 90\% of the hash power of the network relative to the 90-th percentile latency from other nodes. A key contribution of our work is the use of a network coordinates based model for learning the network structure within the bandit algorithm. Experimentally we show our proposed algorithm outperforming or matching baselines on diverse network settings.


Cherry-Picking with Reinforcement Learning : Robust Dynamic Grasping in Unstable Conditions

arXiv.org Artificial Intelligence

Abstract--Grasping small objects surrounded by unstable or non-rigid material plays a crucial role in applications such as surgery, harvesting, construction, disaster recovery, and assisted feeding. This task is especially difficult when fine manipulation is required in the presence of sensor noise and perception errors; errors inevitably trigger dynamic motion, which is challenging to model precisely. Circumventing the difficulty to build accurate models for contacts and dynamics, data-driven methods like reinforcement learning (RL) can optimize task performance via trial and error, reducing the need for accurate models of contacts and dynamics. Applying RL methods to real robots, however, has been hindered by factors such as prohibitively high sample complexity or the high training infrastructure cost for providing resets on hardware. This work presents CherryBot, an RL system that uses chopsticks for fine manipulation that surpasses human reactiveness for some dynamic grasping tasks. By integrating imprecise simulators, suboptimal demonstrations and external state estimation, we study how to make a realworld robot learning system sample efficient and general while reducing the human effort required for supervision. Our system shows continual improvement through 30 minutes of real-world interaction: through reactive retry, it achieves an almost 100% success rate on the demanding task of using chopsticks to grasp small objects swinging in the air. We demonstrate the reactiveness, robustness and generalizability of CherryBot to varying object shapes and dynamics (e.g., external disturbances However, this research investigates a more universal solution: assuming that fine manipulation is required, inaccuracy is How can we automate the task of picking cherries from a unavoidable and real-time reaction is necessary, can we enable tree branch that is blowing in the wind, causing the branch dynamic fine grasping without stable support? An ideal agent to shake and the cherries to tremble? This scenario is an should be: example of fine grasping without rigid-surface support, and its challenges are two-fold.


Navigating Fairness in Radiology AI: Concepts, Consequences,and Crucial Considerations

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) has significantly revolutionized radiology, promising improved patient outcomes and streamlined processes. However, it's critical to ensure the fairness of AI models to prevent stealthy bias and disparities from leading to unequal outcomes. This review discusses the concept of fairness in AI, focusing on bias auditing using the Aequitas toolkit, and its real-world implications in radiology, particularly in disease screening scenarios. Aequitas, an open-source bias audit toolkit, scrutinizes AI models' decisions, identifying hidden biases that may result in disparities across different demographic groups and imaging equipment brands. This toolkit operates on statistical theories, analyzing a large dataset to reveal a model's fairness. It excels in its versatility to handle various variables simultaneously, especially in a field as diverse as radiology. The review explicates essential fairness metrics: Equal and Proportional Parity, False Positive Rate Parity, False Discovery Rate Parity, False Negative Rate Parity, and False Omission Rate Parity. Each metric serves unique purposes and offers different insights. We present hypothetical scenarios to demonstrate their relevance in disease screening settings, and how disparities can lead to significant real-world impacts.


Self-Supervised Reinforcement Learning that Transfers using Random Features

arXiv.org Artificial Intelligence

Model-free reinforcement learning algorithms have exhibited great potential in solving single-task sequential decision-making problems with high-dimensional observations and long horizons, but are known to be hard to generalize across tasks. Model-based RL, on the other hand, learns task-agnostic models of the world that naturally enables transfer across different reward functions, but struggles to scale to complex environments due to the compounding error. To get the best of both worlds, we propose a self-supervised reinforcement learning method that enables the transfer of behaviors across tasks with different rewards, while circumventing the challenges of model-based RL. In particular, we show self-supervised pre-training of model-free reinforcement learning with a number of random features as rewards allows implicit modeling of long-horizon environment dynamics. Then, planning techniques like model-predictive control using these implicit models enable fast adaptation to problems with new reward functions. Our method is self-supervised in that it can be trained on offline datasets without reward labels, but can then be quickly deployed on new tasks. We validate that our proposed method enables transfer across tasks on a variety of manipulation and locomotion domains in simulation, opening the door to generalist decision-making agents.


Prompt Evolution for Generative AI: A Classifier-Guided Approach

arXiv.org Artificial Intelligence

Synthesis of digital artifacts conditioned on user prompts has become an important paradigm facilitating an explosion of use cases with generative AI. However, such models often fail to connect the generated outputs and desired target concepts/preferences implied by the prompts. Current research addressing this limitation has largely focused on enhancing the prompts before output generation or improving the model's performance up front. In contrast, this paper conceptualizes prompt evolution, imparting evolutionary selection pressure and variation during the generative process to produce multiple outputs that satisfy the target concepts/preferences better. We propose a multi-objective instantiation of this broader idea that uses a multi-label image classifier-guided approach. The predicted labels from the classifiers serve as multiple objectives to optimize, with the aim of producing diversified images that meet user preferences. A novelty of our evolutionary algorithm is that the pre-trained generative model gives us implicit mutation operations, leveraging the model's stochastic generative capability to automate the creation of Pareto-optimized images more faithful to user preferences.


Learning to Extrapolate: A Transductive Approach

arXiv.org Artificial Intelligence

Machine learning systems, especially with overparameterized deep neural networks, can generalize to novel test instances drawn from the same distribution as the training data. However, they fare poorly when evaluated on out-of-support test points. In this work, we tackle the problem of developing machine learning systems that retain the power of overparameterized function approximators while enabling extrapolation to out-of-support test points when possible. This is accomplished by noting that under certain conditions, a "transductive" reparameterization can convert an out-of-support extrapolation problem into a problem of within-support combinatorial generalization. We propose a simple strategy based on bilinear embeddings to enable this type of combinatorial generalization, thereby addressing the out-of-support extrapolation problem under certain conditions. We instantiate a simple, practical algorithm applicable to various supervised learning and imitation learning tasks.


Asking Better Questions -- The Art and Science of Forecasting: A mechanism for truer answers to high-stakes questions

arXiv.org Artificial Intelligence

Without the ability to estimate and benchmark AI capability advancements, organizations are left to respond to each change reactively, impeding their ability to build viable mid and long-term strategies. This paper explores the recent growth of forecasting, a political science tool that uses explicit assumptions and quantitative estimation that leads to improved prediction accuracy. Done at the collective level, forecasting can identify and verify talent, enable leaders to build better models of AI advancements and improve inputs into design policy. Successful approaches to forecasting and case studies are examined, revealing a subclass of "superforecasters" who outperform 98% of the population and whose insights will be most reliable. Finally, techniques behind successful forecasting are outlined, including Phillip Tetlock's "Ten Commandments." To adapt to a quickly changing technology landscape, designers and policymakers should consider forecasting as a first line of defense.