Guo, Yuting
Comparing Llama3 and DeepSeekR1 on Biomedical Text Classification Tasks
Guo, Yuting, Sarker, Abeed
This study compares the performance of two open-source large language models (LLMs)-Llama3-70B and DeepSeekR1-distill-Llama3-70B-on six biomedical text classification tasks. Four tasks involve data from social media, while two tasks focus on clinical notes from electronic health records, and all experiments were performed in zero-shot settings. Performance metrics, including precision, recall, and F1 scores, were measured for each task, along with their 95% confidence intervals. Results demonstrated that DeepSeekR1-distill-Llama3-70B generally performs better in terms of precision on most tasks, with mixed results on recall. While the zero-shot LLMs demonstrated high F1 scores for some tasks, they grossly underperformed on others, for data from both sources. The findings suggest that model selection should be guided by the specific requirements of the health-related text classification tasks, particularly when considering the precision-recall trade-offs, and that, in the presence of annotated data, supervised classification approaches may be more reliable than zero-shot LLMs.
HILGEN: Hierarchically-Informed Data Generation for Biomedical NER Using Knowledgebases and Large Language Models
Ge, Yao, Guo, Yuting, Das, Sudeshna, Rajwal, Swati, Bozkurt, Selen, Sarker, Abeed
We present HILGEN, a Hierarchically-Informed Data Generation approach that combines domain knowledge from the Unified Medical Language System (UMLS) with synthetic data generated by large language models (LLMs), specifically GPT-3.5. Our approach leverages UMLS's hierarchical structure to expand training data with related concepts, while incorporating contextual information from LLMs through targeted prompts aimed at automatically generating synthetic examples for sparsely occurring named entities. The performance of the HILGEN approach was evaluated across four biomedical NER datasets (MIMIC III, BC5CDR, NCBI-Disease, and Med-Mentions) using BERT-Large and DANN (Data Augmentation with Nearest Neighbor Classifier) models, applying various data generation strategies, including UMLS, GPT-3.5, and their best ensemble. For the BERT-Large model, incorporating UMLS led to an average F1 score improvement of 40.36%, while using GPT-3.5 resulted in a comparable average increase of 40.52%. The Best-Ensemble approach using BERT-Large achieved the highest improvement, with an average increase of 42.29%. DANN model's F1 score improved by 22.74% on average using the UMLS-only approach. The GPT-3.5-based method resulted in a 21.53% increase, and the Best-Ensemble DANN model showed a more notable improvement, with an average increase of 25.03%. Our proposed HILGEN approach improves NER performance in few-shot settings without requiring additional manually annotated data. Our experiments demonstrate that an effective strategy for optimizing biomedical NER is to combine biomedical knowledge curated in the past, such as the UMLS, and generative LLMs to create synthetic training instances. Our future research will focus on exploring additional innovative synthetic data generation strategies for further improving NER performance.
Two-layer retrieval augmented generation framework for low-resource medical question-answering: proof of concept using Reddit data
Das, Sudeshna, Ge, Yao, Guo, Yuting, Rajwal, Swati, Hairston, JaMor, Powell, Jeanne, Walker, Drew, Peddireddy, Snigdha, Lakamana, Sahithi, Bozkurt, Selen, Reyna, Matthew, Sameni, Reza, Xiao, Yunyu, Kim, Sangmi, Chandler, Rasheeta, Hernandez, Natalie, Mowery, Danielle, Wightman, Rachel, Love, Jennifer, Spadaro, Anthony, Perrone, Jeanmarie, Sarker, Abeed
Retrieval augmented generation (RAG) provides the capability to constrain generative model outputs, and mitigate the possibility of hallucination, by providing relevant in-context text. The number of tokens a generative large language model (LLM) can incorporate as context is finite, thus limiting the volume of knowledge from which to generate an answer. We propose a two-layer RAG framework for query-focused answer generation and evaluate a proof-of-concept for this framework in the context of query-focused summary generation from social media forums, focusing on emerging drug-related information. The evaluations demonstrate the effectiveness of the two-layer framework in resource constrained settings to enable researchers in obtaining near real-time data from users.
Evaluating Large Language Models for Health-Related Text Classification Tasks with Public Social Media Data
Guo, Yuting, Ovadje, Anthony, Al-Garadi, Mohammed Ali, Sarker, Abeed
Large language models (LLMs) have demonstrated remarkable success in NLP tasks. However, there is a paucity of studies that attempt to evaluate their performances on social media-based health-related natural language processing tasks, which have traditionally been difficult to achieve high scores in. We benchmarked one supervised classic machine learning model based on Support Vector Machines (SVMs), three supervised pretrained language models (PLMs) based on RoBERTa, BERTweet, and SocBERT, and two LLM based classifiers (GPT3.5 and GPT4), across 6 text classification tasks. We developed three approaches for leveraging LLMs for text classification: employing LLMs as zero-shot classifiers, us-ing LLMs as annotators to annotate training data for supervised classifiers, and utilizing LLMs with few-shot examples for augmentation of manually annotated data. Our comprehensive experiments demonstrate that employ-ing data augmentation using LLMs (GPT-4) with relatively small human-annotated data to train lightweight supervised classification models achieves superior results compared to training with human-annotated data alone. Supervised learners also outperform GPT-4 and GPT-3.5 in zero-shot settings. By leveraging this data augmentation strategy, we can harness the power of LLMs to develop smaller, more effective domain-specific NLP models. LLM-annotated data without human guidance for training light-weight supervised classification models is an ineffective strategy. However, LLM, as a zero-shot classifier, shows promise in excluding false negatives and potentially reducing the human effort required for data annotation. Future investigations are imperative to explore optimal training data sizes and the optimal amounts of augmented data.
Leveraging Large Language Models for Analyzing Blood Pressure Variations Across Biological Sex from Scientific Literature
Guo, Yuting, Mousavi, Seyedeh Somayyeh, Sameni, Reza, Sarker, Abeed
Hypertension, defined as blood pressure (BP) that is above normal, holds paramount significance in the realm of public health, as it serves as a critical precursor to various cardiovascular diseases (CVDs) and significantly contributes to elevated mortality rates worldwide. However, many existing BP measurement technologies and standards might be biased because they do not consider clinical outcomes, comorbidities, or demographic factors, making them inconclusive for diagnostic purposes. There is limited data-driven research focused on studying the variance in BP measurements across these variables. In this work, we employed GPT-35-turbo, a large language model (LLM), to automatically extract the mean and standard deviation values of BP for both males and females from a dataset comprising 25 million abstracts sourced from PubMed. 993 article abstracts met our predefined inclusion criteria (i.e., presence of references to blood pressure, units of blood pressure such as mmHg, and mention of biological sex). Based on the automatically-extracted information from these articles, we conducted an analysis of the variations of BP values across biological sex. Our results showed the viability of utilizing LLMs to study the BP variations across different demographic factors.
Generalizable Natural Language Processing Framework for Migraine Reporting from Social Media
Guo, Yuting, Rajwal, Swati, Lakamana, Sahithi, Chiang, Chia-Chun, Menell, Paul C., Shahid, Adnan H., Chen, Yi-Chieh, Chhabra, Nikita, Chao, Wan-Ju, Chao, Chieh-Ju, Schwedt, Todd J., Banerjee, Imon, Sarker, Abeed
Migraine is a high-prevalence and disabling neurological disorder. However, information migraine management in real-world settings could be limited to traditional health information sources. In this paper, we (i) verify that there is substantial migraine-related chatter available on social media (Twitter and Reddit), self-reported by migraine sufferers; (ii) develop a platform-independent text classification system for automatically detecting self-reported migraine-related posts, and (iii) conduct analyses of the self-reported posts to assess the utility of social media for studying this problem. We manually annotated 5750 Twitter posts and 302 Reddit posts. Our system achieved an F1 score of 0.90 on Twitter and 0.93 on Reddit. Analysis of information posted by our 'migraine cohort' revealed the presence of a plethora of relevant information about migraine therapies and patient sentiments associated with them. Our study forms the foundation for conducting an in-depth analysis of migraine-related information using social media data.