Guo, Wentao
Predicting Polymer Properties Based on Multimodal Multitask Pretraining
Wang, Fanmeng, Guo, Wentao, Cheng, Minjie, Yuan, Shen, Xu, Hongteng, Gao, Zhifeng
In the past few decades, polymers, high-molecular-weight compounds formed by bonding numerous identical or similar monomers covalently, have played an essential role in various scientific fields. In this context, accurate prediction of their properties is becoming increasingly crucial. Typically, the properties of a polymer, such as plasticity, conductivity, bio-compatibility, and so on, are highly correlated with its 3D structure. However, current methods for predicting polymer properties heavily rely on information from polymer SMILES sequences (P-SMILES strings) while ignoring crucial 3D structural information, leading to sub-optimal performance. In this work, we propose MMPolymer, a novel multimodal multitask pretraining framework incorporating both polymer 1D sequential information and 3D structural information to enhance downstream polymer property prediction tasks. Besides, to overcome the limited availability of polymer 3D data, we further propose the "Star Substitution" strategy to extract 3D structural information effectively. During pretraining, MMPolymer not only predicts masked tokens and recovers 3D coordinates but also achieves the cross-modal alignment of latent representation. Subsequently, we further fine-tune the pretrained MMPolymer for downstream polymer property prediction tasks in the supervised learning paradigm. Experimental results demonstrate that MMPolymer achieves state-of-the-art performance in various polymer property prediction tasks. Moreover, leveraging the pretrained MMPolymer and using only one modality (either P-SMILES string or 3D conformation) during fine-tuning can also surpass existing polymer property prediction methods, highlighting the exceptional capability of MMPolymer in polymer feature extraction and utilization. Our online platform for polymer property prediction is available at https://app.bohrium.dp.tech/mmpolymer.
Zeroth-Order Fine-Tuning of LLMs with Extreme Sparsity
Guo, Wentao, Long, Jikai, Zeng, Yimeng, Liu, Zirui, Yang, Xinyu, Ran, Yide, Gardner, Jacob R., Bastani, Osbert, De Sa, Christopher, Yu, Xiaodong, Chen, Beidi, Xu, Zhaozhuo
Zeroth-order optimization (ZO) is a memory-efficient strategy for fine-tuning Large Language Models using only forward passes. However, the application of ZO fine-tuning in memory-constrained settings such as mobile phones and laptops is still challenging since full precision forward passes are infeasible. In this study, we address this limitation by integrating sparsity and quantization into ZO fine-tuning of LLMs. Specifically, we investigate the feasibility of fine-tuning an extremely small subset of LLM parameters using ZO. This approach allows the majority of un-tuned parameters to be quantized to accommodate the constraint of limited device memory. Our findings reveal that the pre-training process can identify a set of "sensitive parameters" that can guide the ZO fine-tuning of LLMs on downstream tasks. Our results demonstrate that fine-tuning 0.1% sensitive parameters in the LLM with ZO can outperform the full ZO fine-tuning performance, while offering wall-clock time speedup. Additionally, we show that ZO fine-tuning targeting these 0.1% sensitive parameters, combined with 4 bit quantization, enables efficient ZO fine-tuning of an Llama2-7B model on a GPU device with less than 8 GiB of memory and notably reduced latency.
Coordinating Distributed Example Orders for Provably Accelerated Training
Cooper, A. Feder, Guo, Wentao, Pham, Khiem, Yuan, Tiancheng, Ruan, Charlie F., Lu, Yucheng, De Sa, Christopher
Recent research on online Gradient Balancing (GraB) has revealed that there exist permutation-based example orderings for SGD that are guaranteed to outperform random reshuffling (RR). Whereas RR arbitrarily permutes training examples, GraB leverages stale gradients from prior epochs to order examples -- achieving a provably faster convergence rate than RR. However, GraB is limited by design: while it demonstrates an impressive ability to scale-up training on centralized data, it does not naturally extend to modern distributed ML workloads. We therefore propose Coordinated Distributed GraB (CD-GraB), which uses insights from prior work on kernel thinning to translate the benefits of provably faster permutation-based example ordering to distributed settings. With negligible overhead, CD-GraB exhibits a linear speedup in convergence rate over centralized GraB and outperforms distributed RR on a variety of benchmark tasks.
Photo Rater: Photographs Auto-Selector with Deep Learning
Guo, Wentao, Ruan, Charlie, Zhou, Claire
Photo Rater is a computer vision project that uses neural networks to help photographers select the best photo among those that are taken based on the same scene. This process is usually referred to as "culling" in photography, and it can be tedious and time-consuming if done manually. Photo Rater utilizes three separate neural networks to complete such a task: one for general image quality assessment, one for classifying whether the photo is blurry (either due to unsteady hands or out-of-focusness), and one for assessing general aesthetics (including the composition of the photo, among others). After feeding the image through each neural network, Photo Rater outputs a final score for each image, ranking them based on this score and presenting it to the user.
Node-Aligned Graph-to-Graph Generation for Retrosynthesis Prediction
Yao, Lin, Wang, Zhen, Guo, Wentao, Xiang, Shang, Liu, Wentan, Ke, Guolin
Single-step retrosynthesis is a crucial task in organic chemistry and drug design, requiring the identification of required reactants to synthesize a specific compound. with the advent of computer-aided synthesis planning, there is growing interest in using machine-learning techniques to facilitate the process. Existing template-free machine learning-based models typically utilize transformer structures and represent molecules as ID sequences. However, these methods often face challenges in fully leveraging the extensive topological information of the molecule and aligning atoms between the production and reactants, leading to results that are not as competitive as those of semi-template models. Our proposed method, Node-Aligned Graph-to-Graph (NAG2G), also serves as a transformer-based template-free model but utilizes 2D molecular graphs and 3D conformation information. Furthermore, our approach simplifies the incorporation of production-reactant atom mapping alignment by leveraging node alignment to determine a specific order for node generation and generating molecular graphs in an auto-regressive manner node-by-node. This method ensures that the node generation order coincides with the node order in the input graph, overcoming the difficulty of determining a specific node generation order in an auto-regressive manner. Our extensive benchmarking results demonstrate that the proposed NAG2G can outperform the previous state-of-the-art baselines in various metrics.
Assessing the efficacy of large language models in generating accurate teacher responses
Hicke, Yann, Masand, Abhishek, Guo, Wentao, Gangavarapu, Tushaar
(Tack et al., 2023) organized the shared task hosted by the 18th Workshop on Innovative Use of NLP for Building Educational Applications on generation of teacher language in educational dialogues. Following the structure of the shared task, in this study, we attempt to assess the generative abilities of large language models in providing informative and helpful insights to students, thereby simulating the role of a knowledgeable teacher. To this end, we present an extensive evaluation of several benchmarking generative models, including GPT-4 (few-shot, in-context learning), fine-tuned GPT-2, and fine-tuned DialoGPT. Additionally, to optimize for pedagogical quality, we fine-tuned the Flan-T5 model using reinforcement learning. Our experimental findings on the Teacher-Student Chatroom Corpus subset indicate the efficacy of GPT-4 over other fine-tuned models, measured using BERTScore and DialogRPT. We hypothesize that several dataset characteristics, including sampling, representativeness, and dialog completeness, pose significant challenges to fine-tuning, thus contributing to the poor generalizability of the fine-tuned models. Finally, we note the need for these generative models to be evaluated with a metric that relies not only on dialog coherence and matched language modeling distribution but also on the model's ability to showcase pedagogical skills.
Cyclical Kernel Adaptive Metropolis
Li, Jianan Canal, Zeng, Yimeng, Guo, Wentao
We propose cKAM, cyclical Kernel Adaptive Metropolis, which incorporates a cyclical stepsize scheme to allow control for exploration and sampling. We show that on a crafted bimodal distribution, existing Adaptive Metropolis type algorithms would fail to converge to the true posterior distribution. We point out that this is because adaptive samplers estimates the local/global covariance structure using past history of the chain, which will lead to adaptive algorithms be trapped in a local mode. We demonstrate that cKAM encourages exploration of the posterior distribution and allows the sampler to escape from a local mode, while maintaining the high performance of adaptive methods.