Guo, Weiwei
GenComUI: Exploring Generative Visual Aids as Medium to Support Task-Oriented Human-Robot Communication
Ge, Yate, Li, Meiying, Huang, Xipeng, Hu, Yuanda, Wang, Qi, Sun, Xiaohua, Guo, Weiwei
This work investigates the integration of generative visual aids in human-robot task communication. We developed GenComUI, a system powered by large language models that dynamically generates contextual visual aids (such as map annotations, path indicators, and animations) to support verbal task communication and facilitate the generation of customized task programs for the robot. This system was informed by a formative study that examined how humans use external visual tools to assist verbal communication in spatial tasks. To evaluate its effectiveness, we conducted a user experiment (n = 20) comparing GenComUI with a voice-only baseline. The results demonstrate that generative visual aids, through both qualitative and quantitative analysis, enhance verbal task communication by providing continuous visual feedback, thus promoting natural and effective human-robot communication. Additionally, the study offers a set of design implications, emphasizing how dynamically generated visual aids can serve as an effective communication medium in human-robot interaction. These findings underscore the potential of generative visual aids to inform the design of more intuitive and effective human-robot communication, particularly for complex communication scenarios in human-robot interaction and LLM-based end-user development.
Deep Natural Language Processing for LinkedIn Search Systems
Guo, Weiwei, Liu, Xiaowei, Wang, Sida, Kazi, Michaeel, Fu, Zhoutong, Gao, Huiji, Jia, Jun, Zhang, Liang, Long, Bo
Many search systems work with large amounts of natural language data, e.g., search queries, user profiles and documents, where deep learning based natural language processing techniques (deep NLP) can be of great help. In this paper, we introduce a comprehensive study of applying deep NLP techniques to five representative tasks in search engines. Through the model design and experiments of the five tasks, readers can find answers to three important questions: (1) When is deep NLP helpful/not helpful in search systems? (2) How to address latency challenges? (3) How to ensure model robustness? This work builds on existing efforts of LinkedIn search, and is tested at scale on a commercial search engine. We believe our experiences can provide useful insights for the industry and research communities.
Improving Query Efficiency of Black-box Adversarial Attack
Bai, Yang, Zeng, Yuyuan, Jiang, Yong, Wang, Yisen, Xia, Shu-Tao, Guo, Weiwei
Deep neural networks (DNNs) have demonstrated excellent performance on various tasks, however they are under the risk of adversarial examples that can be easily generated when the target model is accessible to an attacker (white-box setting). As plenty of machine learning models have been deployed via online services that only provide query outputs from inaccessible models (e.g., Google Cloud Vision API2), black-box adversarial attacks (inaccessible target model) are of critical security concerns in practice rather than white-box ones. However, existing query-based black-box adversarial attacks often require excessive model queries to maintain a high attack success rate. Therefore, in order to improve query efficiency, we explore the distribution of adversarial examples around benign inputs with the help of image structure information characterized by a Neural Process, and propose a Neural Process based black-box adversarial attack (NP-Attack) in this paper. Extensive experiments show that NP-Attack could greatly decrease the query counts under the black-box setting.
Deep Search Query Intent Understanding
Liu, Xiaowei, Guo, Weiwei, Gao, Huiji, Long, Bo
Understanding a user's query intent behind a search is critical for modern search engine success. Accurate query intent prediction allows the search engine to better serve the user's need by rendering results from more relevant categories. This paper aims to provide a comprehensive learning framework for modeling query intent under different stages of a search. We focus on the design for 1) predicting users' intents as they type in queries on-the-fly in typeahead search using character-level models; and 2) accurate word-level intent prediction models for complete queries. Various deep learning components for query text understanding are experimented. Offline evaluation and online A/B test experiments show that the proposed methods are effective in understanding query intent and efficient to scale for online search systems.