Goto

Collaborating Authors

 Guo, Teng


Targeted Parallelization of Conflict-Based Search for Multi-Robot Path Planning

arXiv.org Artificial Intelligence

Multi-Robot Path Planning (MRPP) on graphs, equivalently known as Multi-Agent Path Finding (MAPF), is a well-established NP-hard problem with critically important applications. As serial computation in (near)-optimally solving MRPP approaches the computation efficiency limit, parallelization offers a promising route to push the limit further, especially in handling hard or large MRPP instances. In this study, we initiated a \emph{targeted} parallelization effort to boost the performance of conflict-based search for MRPP. Specifically, when instances are relatively small but robots are densely packed with strong interactions, we apply a decentralized parallel algorithm that concurrently explores multiple branches that leads to markedly enhanced solution discovery. On the other hand, when instances are large with sparse robot-robot interactions, we prioritize node expansion and conflict resolution. Our innovative multi-threaded approach to parallelizing bounded-suboptimal conflict search-based algorithms demonstrates significant improvements over baseline serial methods in success rate or runtime. Our contribution further pushes the understanding of MRPP and charts a promising path for elevating solution quality and computational efficiency through parallel algorithmic strategies.


Bin Assignment and Decentralized Path Planning for Multi-Robot Parcel Sorting

arXiv.org Artificial Intelligence

At modern warehouses, mobile robots transport packages and drop them into collection bins/chutes based on shipping destinations grouped by, e.g., the ZIP code. System throughput, measured as the number of packages sorted per unit of time, determines the efficiency of the warehouse. This research develops a scalable, high-throughput multi-robot parcel sorting solution, decomposing the task into two related processes, bin assignment and offline/online multi-robot path planning, and optimizing both. Bin assignment matches collection bins with package types to minimize traveling costs. Subsequently, robots are assigned to pick up and drop packages into assigned bins. Multiple highly effective bin assignment algorithms are proposed that can work with an arbitrary planning algorithm. We propose a decentralized path planning routine using only local information to route the robots over a carefully constructed directed road network for multi-robot path planning. Our decentralized planner, provably probabilistically deadlock-free, consistently delivers near-optimal results on par with some top-performing centralized planners while significantly reducing computation times by orders of magnitude. Extensive simulations show that our overall framework delivers promising performances.


Efficient Heuristics for Multi-Robot Path Planning in Crowded Environments

arXiv.org Artificial Intelligence

Optimal Multi-Robot Path Planning (MRPP) has garnered significant attention due to its many applications in domains including warehouse automation, transportation, and swarm robotics. Current MRPP solvers can be divided into reduction-based, search-based, and rule-based categories, each with their strengths and limitations. Regardless of the methodology, however, the issue of handling dense MRPP instances remains a significant challenge, where existing approaches generally demonstrate a dichotomy regarding solution optimality and efficiency. This study seeks to bridge the gap in optimal MRPP resolution for dense, highly-entangled scenarios, with potential applications to high-density storage systems and traffic congestion control. Toward that goal, we analyze the behaviors of SOTA MRPP algorithms in dense settings and develop two hybrid algorithms leveraging the strengths of existing SOTA algorithms: DCBS (database-accelerated enhanced conflict-based search) and SCBS (sparsified enhanced conflict-based search). Experimental validations demonstrate that DCBS and SCBS deliver a significant reduction in computational time compared to existing bounded-suboptimal methods and improve solution quality compared to existing rule-based methods, achieving a desirable balance between computational efficiency and solution optimality. As a result, DCBS and SCBS are particularly suitable for quickly computing good-quality solutions for multi-robot routing in dense settings


Optimal Allocation of Many Robot Guards for Sweep-Line Coverage

arXiv.org Artificial Intelligence

We study the problem of allocating many mobile robots for the execution of a pre-defined sweep schedule in a known two-dimensional environment, with applications toward search and rescue, coverage, surveillance, monitoring, pursuit-evasion, and so on. The mobile robots (or agents) are assumed to have one-dimensional sensing capability with probabilistic guarantees that deteriorate as the sensing distance increases. In solving such tasks, a time-parameterized distribution of robots along the sweep frontier must be computed, with the objective to minimize the number of robots used to achieve some desired coverage quality guarantee or to maximize the probabilistic guarantee for a given number of robots. We propose a max-flow based algorithm for solving the allocation task, which builds on a decomposition technique of the workspace as a generalization of the well-known boustrophedon decomposition. Our proposed algorithm has a very low polynomial running time and completes in under two seconds for polygonal environments with over $10^5$ vertices. Simulation experiments are carried out on three realistic use cases with randomly generated obstacles of varying shapes, sizes, and spatial distributions, which demonstrate the applicability and scalability our proposed method.


Toward Efficient Physical and Algorithmic Design of Automated Garages

arXiv.org Artificial Intelligence

Parking in large metropolitan areas is often a time-consuming task with further implications toward traffic patterns that affect urban landscaping. Reducing the premium space needed for parking has led to the development of automated mechanical parking systems. Compared to regular garages having one or two rows of vehicles in each island, automated garages can have multiple rows of vehicles stacked together to support higher parking demands. Although this multi-row layout reduces parking space, it makes the parking and retrieval more complicated. In this work, we propose an automated garage design that supports near 100% parking density. Modeling the problem of parking and retrieving multiple vehicles as a special class of multi-robot path planning problem, we propose associated algorithms for handling all common operations of the automated garage, including (1) optimal algorithm and near-optimal methods that find feasible and efficient solutions for simultaneous parking/retrieval and (2) a novel shuffling mechanism to rearrange vehicles to facilitate scheduled retrieval at rush hours. We conduct thorough simulation studies showing the proposed methods are promising for large and high-density real-world parking applications.


A Transformer-based Framework for POI-level Social Post Geolocation

arXiv.org Artificial Intelligence

POI-level geo-information of social posts is critical to many location-based applications and services. However, the multi-modality, complexity and diverse nature of social media data and their platforms limit the performance of inferring such fine-grained locations and their subsequent applications. To address this issue, we present a transformer-based general framework, which builds upon pre-trained language models and considers non-textual data, for social post geolocation at the POI level. To this end, inputs are categorized to handle different social data, and an optimal combination strategy is provided for feature representations. Moreover, a uniform representation of hierarchy is proposed to learn temporal information, and a concatenated version of encodings is employed to capture feature-wise positions better. Experimental results on various social datasets demonstrate that three variants of our proposed framework outperform multiple state-of-art baselines by a large margin in terms of accuracy and distance error metrics.