Goto

Collaborating Authors

 Guo, Qing


Towards Benchmarking and Assessing the Safety and Robustness of Autonomous Driving on Safety-critical Scenarios

arXiv.org Artificial Intelligence

Autonomous driving has made significant progress in both academia and industry, including performance improvements in perception task and the development of end-to-end autonomous driving systems. However, the safety and robustness assessment of autonomous driving has not received sufficient attention. Current evaluations of autonomous driving are typically conducted in natural driving scenarios. However, many accidents often occur in edge cases, also known as safety-critical scenarios. These safety-critical scenarios are difficult to collect, and there is currently no clear definition of what constitutes a safety-critical scenario. In this work, we explore the safety and robustness of autonomous driving in safety-critical scenarios. First, we provide a definition of safety-critical scenarios, including static traffic scenarios such as adversarial attack scenarios and natural distribution shifts, as well as dynamic traffic scenarios such as accident scenarios. Then, we develop an autonomous driving safety testing platform to comprehensively evaluate autonomous driving systems, encompassing not only the assessment of perception modules but also system-level evaluations. Our work systematically constructs a safety verification process for autonomous driving, providing technical support for the industry to establish standardized test framework and reduce risks in real-world road deployment.


CORBA: Contagious Recursive Blocking Attacks on Multi-Agent Systems Based on Large Language Models

arXiv.org Artificial Intelligence

Large Language Model-based Multi-Agent Systems (LLM-MASs) have demonstrated remarkable real-world capabilities, effectively collaborating to complete complex tasks. While these systems are designed with safety mechanisms, such as rejecting harmful instructions through alignment, their security remains largely unexplored. This gap leaves LLM-MASs vulnerable to targeted disruptions. In this paper, we introduce Contagious Recursive Blocking Attacks (Corba), a novel and simple yet highly effective attack that disrupts interactions between agents within an LLM-MAS. Corba leverages two key properties: its contagious nature allows it to propagate across arbitrary network topologies, while its recursive property enables sustained depletion of computational resources. Notably, these blocking attacks often involve seemingly benign instructions, making them particularly challenging to mitigate using conventional alignment methods. We evaluate Corba on two widely-used LLM-MASs, namely, AutoGen and Camel across various topologies and commercial models. Additionally, we conduct more extensive experiments in open-ended interactive LLM-MASs, demonstrating the effectiveness of Corba in complex topology structures and open-source models. Our code is available at: https://github.com/zhrli324/Corba.


TruePose: Human-Parsing-guided Attention Diffusion for Full-ID Preserving Pose Transfer

arXiv.org Artificial Intelligence

Pose-Guided Person Image Synthesis (PGPIS) generates images that maintain a subject's identity from a source image while adopting a specified target pose (e.g., skeleton). While diffusion-based PGPIS methods effectively preserve facial features during pose transformation, they often struggle to accurately maintain clothing details from the source image throughout the diffusion process. This limitation becomes particularly problematic when there is a substantial difference between the source and target poses, significantly impacting PGPIS applications in the fashion industry where clothing style preservation is crucial for copyright protection. Our analysis reveals that this limitation primarily stems from the conditional diffusion model's attention modules failing to adequately capture and preserve clothing patterns. To address this limitation, we propose human-parsing-guided attention diffusion, a novel approach that effectively preserves both facial and clothing appearance while generating high-quality results. We propose a human-parsing-aware Siamese network that consists of three key components: dual identical UNets (TargetNet for diffusion denoising and SourceNet for source image embedding extraction), a human-parsing-guided fusion attention (HPFA), and a CLIP-guided attention alignment (CAA). The HPFA and CAA modules can embed the face and clothes patterns into the target image generation adaptively and effectively. Extensive experiments on both the in-shop clothes retrieval benchmark and the latest in-the-wild human editing dataset demonstrate our method's significant advantages over 13 baseline approaches for preserving both facial and clothes appearance in the source image.


Defending LVLMs Against Vision Attacks through Partial-Perception Supervision

arXiv.org Artificial Intelligence

Recent studies have raised significant concerns regarding the vulnerability of Large Vision Language Models (LVLMs) to maliciously injected or perturbed input images, which can mislead their responses. Existing defense methods show that such vision attacks are sensitive to image modifications especially cropping, using majority voting across responses of modified images as corrected responses. However, these modifications often result in partial images and distort the semantics, which reduces response quality on clean images after voting. Instead of directly using responses from partial images for voting, we investigate using them to supervise the LVLM's responses to the original images. We propose a black-box, training-free method called DPS (Defense through Partial-Perception Supervision). In this approach, the model is prompted using the responses generated by a model that perceives only a partial image. With DPS, the model can adjust its response based on partial image understanding when under attack, while confidently maintaining its original response for clean input. Our findings show that the weak model can supervise the strong model: when faced with an attacked input, the strong model becomes less confident and adjusts its response based on the weak model's partial understanding, effectively defending against the attack. With clean input, it confidently maintains its original response. Empirical experiments show our method outperforms the baseline, cutting the average attack success rate by 76.3% across six datasets on three popular models.


MAGIC: Mastering Physical Adversarial Generation in Context through Collaborative LLM Agents

arXiv.org Artificial Intelligence

Physical adversarial attacks in driving scenarios can expose critical vulnerabilities in visual perception models. However, developing such attacks remains challenging due to diverse real-world backgrounds and the requirement for maintaining visual naturality. Building upon this challenge, we reformulate physical adversarial attacks as a one-shot patch-generation problem. Our approach generates adversarial patches through a deep generative model that considers the specific scene context, enabling direct physical deployment in matching environments. The primary challenge lies in simultaneously achieving two objectives: generating adversarial patches that effectively mislead object detection systems while determining contextually appropriate placement within the scene. We propose MAGIC (Mastering Physical Adversarial Generation In Context), a novel framework powered by multi-modal LLM agents to address these challenges. MAGIC automatically understands scene context and orchestrates adversarial patch generation through the synergistic interaction of language and vision capabilities. MAGIC orchestrates three specialized LLM agents: The adv-patch generation agent (GAgent) masters the creation of deceptive patches through strategic prompt engineering for text-to-image models. The adv-patch deployment agent (DAgent) ensures contextual coherence by determining optimal placement strategies based on scene understanding. The self-examination agent (EAgent) completes this trilogy by providing critical oversight and iterative refinement of both processes. We validate our method on both digital and physical level, \ie, nuImage and manually captured real scenes, where both statistical and visual results prove that our MAGIC is powerful and effectively for attacking wide-used object detection systems.


SceneTAP: Scene-Coherent Typographic Adversarial Planner against Vision-Language Models in Real-World Environments

arXiv.org Artificial Intelligence

Large vision-language models (LVLMs) have shown remarkable capabilities in interpreting visual content. While existing works demonstrate these models' vulnerability to deliberately placed adversarial texts, such texts are often easily identifiable as anomalous. In this paper, we present the first approach to generate scene-coherent typographic adversarial attacks that mislead advanced LVLMs while maintaining visual naturalness through the capability of the LLM-based agent. Our approach addresses three critical questions: what adversarial text to generate, where to place it within the scene, and how to integrate it seamlessly. We propose a training-free, multi-modal LLM-driven scene-coherent typographic adversarial planning (SceneTAP) that employs a three-stage process: scene understanding, adversarial planning, and seamless integration. The SceneTAP utilizes chain-of-thought reasoning to comprehend the scene, formulate effective adversarial text, strategically plan its placement, and provide detailed instructions for natural integration within the image. This is followed by a scene-coherent TextDiffuser that executes the attack using a local diffusion mechanism. We extend our method to real-world scenarios by printing and placing generated patches in physical environments, demonstrating its practical implications. Extensive experiments show that our scene-coherent adversarial text successfully misleads state-of-the-art LVLMs, including ChatGPT-4o, even after capturing new images of physical setups. Our evaluations demonstrate a significant increase in attack success rates while maintaining visual naturalness and contextual appropriateness. This work highlights vulnerabilities in current vision-language models to sophisticated, scene-coherent adversarial attacks and provides insights into potential defense mechanisms.


Imitation from Diverse Behaviors: Wasserstein Quality Diversity Imitation Learning with Single-Step Archive Exploration

arXiv.org Artificial Intelligence

Learning diverse and high-performance behaviors from a limited set of demonstrations is a grand challenge. Traditional imitation learning methods usually fail in this task because most of them are designed to learn one specific behavior even with multiple demonstrations. Therefore, novel techniques for quality diversity imitation learning are needed to solve the above challenge. This work introduces Wasserstein Quality Diversity Imitation Learning (WQDIL), which 1) improves the stability of imitation learning in the quality diversity setting with latent adversarial training based on a Wasserstein Auto-Encoder (WAE), and 2) mitigates a behavior-overfitting issue using a measure-conditioned reward function with a single-step archive exploration bonus. Empirically, our method significantly outperforms state-of-the-art IL methods, achieving near-expert or beyond-expert QD performance on the challenging continuous control tasks derived from MuJoCo environments.


Quality Diversity Imitation Learning

arXiv.org Artificial Intelligence

Imitation learning (IL) has shown great potential in various applications, such as robot control. However, traditional IL methods are usually designed to learn only one specific type of behavior since demonstrations typically correspond to a single expert. In this work, we introduce the first generic framework for Quality Diversity Imitation Learning (QD-IL), which enables the agent to learn a broad range of skills from limited demonstrations. Our framework integrates the principles of quality diversity with adversarial imitation learning (AIL) methods, and can potentially improve any inverse reinforcement learning (IRL) method. Empirically, our framework significantly improves the QD performance of GAIL and VAIL on the challenging continuous control tasks derived from Mujoco environments. Moreover, our method even achieves 2x expert performance in the most challenging Humanoid environment.


MAVIN: Multi-Action Video Generation with Diffusion Models via Transition Video Infilling

arXiv.org Artificial Intelligence

Diffusion-based video generation has achieved significant progress, yet generating multiple actions that occur sequentially remains a formidable task. Directly generating a video with sequential actions can be extremely challenging due to the scarcity of fine-grained action annotations and the difficulty in establishing temporal semantic correspondences and maintaining long-term consistency. To tackle this, we propose an intuitive and straightforward solution: splicing multiple single-action video segments sequentially. The core challenge lies in generating smooth and natural transitions between these segments given the inherent complexity and variability of action transitions. We introduce MAVIN (Multi-Action Video INfilling model), designed to generate transition videos that seamlessly connect two given videos, forming a cohesive integrated sequence. MAVIN incorporates several innovative techniques to address challenges in the transition video infilling task. Firstly, a consecutive noising strategy coupled with variable-length sampling is employed to handle large infilling gaps and varied generation lengths. Secondly, boundary frame guidance (BFG) is proposed to address the lack of semantic guidance during transition generation. Lastly, a Gaussian filter mixer (GFM) dynamically manages noise initialization during inference, mitigating train-test discrepancy while preserving generation flexibility. Additionally, we introduce a new metric, CLIP-RS (CLIP Relative Smoothness), to evaluate temporal coherence and smoothness, complementing traditional quality-based metrics. Experimental results on horse and tiger scenarios demonstrate MAVIN's superior performance in generating smooth and coherent video transitions compared to existing methods.


Semantic-guided Prompt Organization for Universal Goal Hijacking against LLMs

arXiv.org Artificial Intelligence

Abstract--With the rising popularity of Large Language Models (LLMs), assessing their trustworthiness through security tasks has gained critical importance. Regarding the new task of universal goal hijacking, previous efforts have concentrated solely on optimization algorithms, overlooking the crucial role of the prompt. To fill this gap, we propose a universal goal hijacking method called POUGH that incorporates semantic-guided prompt processing strategies. Specifically, the method starts with a sampling strategy to select representative prompts from a candidate pool, followed by a ranking strategy that prioritizes the prompts. Once the prompts are organized sequentially, the method employs an iterative optimization algorithm to generate the universal fixed suffix for the prompts. Experiments conducted on four popular LLMs and ten types of target responses verified the effectiveness of our method.