Guo, Chongtao
Deep Reinforcement Learning-Based User Scheduling for Collaborative Perception
Liu, Yandi, Liu, Guowei, Liang, Le, Ye, Hao, Guo, Chongtao, Jin, Shi
Stand-alone perception systems in autonomous driving suffer from limited sensing ranges and occlusions at extended distances, potentially resulting in catastrophic outcomes. To address this issue, collaborative perception is envisioned to improve perceptual accuracy by using vehicle-to-everything (V2X) communication to enable collaboration among connected and autonomous vehicles and roadside units. However, due to limited communication resources, it is impractical for all units to transmit sensing data such as point clouds or high-definition video. As a result, it is essential to optimize the scheduling of communication links to ensure efficient spectrum utilization for the exchange of perceptual data. In this work, we propose a deep reinforcement learning-based V2X user scheduling algorithm for collaborative perception. Given the challenges in acquiring perceptual labels, we reformulate the conventional label-dependent objective into a label-free goal, based on characteristics of 3D object detection. Incorporating both channel state information (CSI) and semantic information, we develop a double deep Q-Network (DDQN)-based user scheduling framework for collaborative perception, named SchedCP. Simulation results verify the effectiveness and robustness of SchedCP compared with traditional V2X scheduling methods. Finally, we present a case study to illustrate how our proposed algorithm adaptively modifies the scheduling decisions by taking both instantaneous CSI and perceptual semantics into account.
Heterogeneous Multi-Agent Reinforcement Learning for Distributed Channel Access in WLANs
Yu, Jiaming, Liang, Le, Guo, Chongtao, Guo, Ziyang, Jin, Shi, Li, Geoffrey Ye
This paper investigates the use of multi-agent reinforcement learning (MARL) to address distributed channel access in wireless local area networks. In particular, we consider the challenging yet more practical case where the agents heterogeneously adopt value-based or policy-based reinforcement learning algorithms to train the model. We propose a heterogeneous MARL training framework, named QPMIX, which adopts a centralized training with distributed execution paradigm to enable heterogeneous agents to collaborate. Moreover, we theoretically prove the convergence of the proposed heterogeneous MARL method when using the linear value function approximation. Our method maximizes the network throughput and ensures fairness among stations, therefore, enhancing the overall network performance. Simulation results demonstrate that the proposed QPMIX algorithm improves throughput, mean delay, delay jitter, and collision rates compared with conventional carrier-sense multiple access with collision avoidance in the saturated traffic scenario. Furthermore, the QPMIX is shown to be robust in unsaturated and delay-sensitive traffic scenarios, and promotes cooperation among heterogeneous agents.