Goto

Collaborating Authors

 Guo, Baining


Diffusion Models without Classifier-free Guidance

arXiv.org Artificial Intelligence

This paper presents Model-guidance (MG), a novel objective for training diffusion model that addresses and removes of the commonly used Classifier-free guidance (CFG). Our innovative approach transcends the standard modeling of solely data distribution to incorporating the posterior probability of conditions. The proposed technique originates from the idea of CFG and is easy yet effective, making it a plug-and-play module for existing models. Our method significantly accelerates the training process, doubles the inference speed, and achieve exceptional quality that parallel and even surpass concurrent diffusion models with CFG. Extensive experiments demonstrate the effectiveness, efficiency, scalability on different models and datasets. Finally, we establish state-of-the-art performance on ImageNet 256 benchmarks with an FID of 1.34. Our code is available at https://github.com/tzco/Diffusion-wo-CFG.


Optimizing Large Language Model Training Using FP4 Quantization

arXiv.org Artificial Intelligence

The growing computational demands of training large language models (LLMs) necessitate more efficient methods. Quantized training presents a promising solution by enabling low-bit arithmetic operations to reduce these costs. While FP8 precision has demonstrated feasibility, leveraging FP4 remains a challenge due to significant quantization errors and limited representational capacity. This work introduces the first FP4 training framework for LLMs, addressing these challenges with two key innovations: a differentiable quantization estimator for precise weight updates and an outlier clamping and compensation strategy to prevent activation collapse. To ensure stability, the framework integrates a mixed-precision training scheme and vector-wise quantization. Experimental results demonstrate that our FP4 framework achieves accuracy comparable to BF16 and FP8, with minimal degradation, scaling effectively to 13B-parameter LLMs trained on up to 100B tokens. With the emergence of next-generation hardware supporting FP4, our framework sets a foundation for efficient ultra-low precision training.


MageBench: Bridging Large Multimodal Models to Agents

arXiv.org Artificial Intelligence

LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents, which demand strong reasoning and planning abilities. Nevertheless, existing benchmarks mostly assess their reasoning abilities in language part, where the chain-of-thought is entirely composed of text.We consider the scenario where visual signals are continuously updated and required along the decision making process. Such vision-in-the-chain reasoning paradigm is more aligned with the needs of multimodal agents, while being rarely evaluated. In this paper, we introduce MageBench, a reasoning capability oriented multimodal agent benchmark that, while having light-weight environments, poses significant reasoning challenges and holds substantial practical value. This benchmark currently includes three types of environments: WebUI, Sokoban, and Football, comprising a total of 483 different scenarios. It thoroughly validates the agent's knowledge and engineering capabilities, visual intelligence, and interaction skills. The results show that only a few product-level models are better than random acting, and all of them are far inferior to human-level. More specifically, we found current models severely lack the ability to modify their planning based on visual feedback, as well as visual imagination, interleaved image-text long context handling, and other abilities. We hope that our work will provide optimization directions for LMM from the perspective of being an agent. We release our code and data at https://github.com/microsoft/MageBench.


UniGraspTransformer: Simplified Policy Distillation for Scalable Dexterous Robotic Grasping

arXiv.org Artificial Intelligence

We introduce UniGraspTransformer, a universal Transformer-based network for dexterous robotic grasping that simplifies training while enhancing scalability and performance. Unlike prior methods such as UniDexGrasp++, which require complex, multi-step training pipelines, UniGraspTransformer follows a streamlined process: first, dedicated policy networks are trained for individual objects using reinforcement learning to generate successful grasp trajectories; then, these trajectories are distilled into a single, universal network. Our approach enables UniGraspTransformer to scale effectively, incorporating up to 12 self-attention blocks for handling thousands of objects with diverse poses. Additionally, it generalizes well to both idealized and real-world inputs, evaluated in state-based and vision-based settings. Notably, UniGraspTransformer generates a broader range of grasping poses for objects in various shapes and orientations, resulting in more diverse grasp strategies. Experimental results demonstrate significant improvements over state-of-the-art, UniDexGrasp++, across various object categories, achieving success rate gains of 3.5%, 7.7%, and 10.1% on seen objects, unseen objects within seen categories, and completely unseen objects, respectively, in the vision-based setting. Project page: https://dexhand.github.io/UniGraspTransformer.


CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation

arXiv.org Artificial Intelligence

The advancement of large Vision-Language-Action (VLA) models has significantly improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios. While existing VLAs adapted from pretrained large Vision-Language-Models (VLM) have demonstrated promising generalizability, their task performance is still unsatisfactory as indicated by the low tasks success rates in different environments. In this paper, we present a new advanced VLA architecture derived from VLM. Unlike previous works that directly repurpose VLM for action prediction by simple action quantization, we propose a omponentized VLA architecture that has a specialized action module conditioned on VLM output. We systematically study the design of the action module and demonstrates the strong performance enhancement with diffusion action transformers for action sequence modeling, as well as their favorable scaling behaviors. We also conduct comprehensive experiments and ablation studies to evaluate the efficacy of our models with varied designs. The evaluation on 5 robot embodiments in simulation and real work shows that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds. It exceeds the average success rates of OpenVLA which has similar model size (7B) with ours by over 35% in simulated evaluation and 55% in real robot experiments. It also outperforms the large RT-2-X model (55B) by 18% absolute success rates in simulation. Code and models can be found on our project page (https://cogact.github.io/).


Aligning Vision Models with Human Aesthetics in Retrieval: Benchmarks and Algorithms

arXiv.org Artificial Intelligence

Modern vision models are trained on very large noisy datasets. While these models acquire strong capabilities, they may not follow the user's intent to output the desired results in certain aspects, e.g., visual aesthetic, preferred style, and responsibility. In this paper, we target the realm of visual aesthetics and aim to align vision models with human aesthetic standards in a retrieval system. Advanced retrieval systems usually adopt a cascade of aesthetic models as re-rankers or filters, which are limited to low-level features like saturation and perform poorly when stylistic, cultural or knowledge contexts are involved. We find that utilizing the reasoning ability of large language models (LLMs) to rephrase the search query and extend the aesthetic expectations can make up for this shortcoming. Based on the above findings, we propose a preference-based reinforcement learning method that fine-tunes the vision models to distill the knowledge from both LLMs reasoning and the aesthetic models to better align the vision models with human aesthetics. Meanwhile, with rare benchmarks designed for evaluating retrieval systems, we leverage large multi-modality model (LMM) to evaluate the aesthetic performance with their strong abilities. As aesthetic assessment is one of the most subjective tasks, to validate the robustness of LMM, we further propose a novel dataset named HPIR to benchmark the alignment with human aesthetics. Experiments demonstrate that our method significantly enhances the aesthetic behaviors of the vision models, under several metrics. We believe the proposed algorithm can be a general practice for aligning vision models with human values.


Simplified Diffusion Schr\"odinger Bridge

arXiv.org Artificial Intelligence

This paper introduces a novel theoretical simplification of the Diffusion Schr\"odinger Bridge (DSB) that facilitates its unification with Score-based Generative Models (SGMs), addressing the limitations of DSB in complex data generation and enabling faster convergence and enhanced performance. By employing SGMs as an initial solution for DSB, our approach capitalizes on the strengths of both frameworks, ensuring a more efficient training process and improving the performance of SGM. We also propose a reparameterization technique that, despite theoretical approximations, practically improves the network's fitting capabilities. Our extensive experimental evaluations confirm the effectiveness of the simplified DSB, demonstrating its significant improvements. We believe the contributions of this work pave the way for advanced generative modeling. The code is available at https://github.com/checkcrab/SDSB.


PeCo: Perceptual Codebook for BERT Pre-training of Vision Transformers

arXiv.org Artificial Intelligence

This paper explores a better prediction target for BERT pre-training of vision transformers. We observe that current prediction targets disagree with human perception judgment.This contradiction motivates us to learn a perceptual prediction target. We argue that perceptually similar images should stay close to each other in the prediction target space. We surprisingly find one simple yet effective idea: enforcing perceptual similarity during the dVAE training. Moreover, we adopt a self-supervised transformer model for deep feature extraction and show that it works well for calculating perceptual similarity.We demonstrate that such learned visual tokens indeed exhibit better semantic meanings, and help pre-training achieve superior transfer performance in various downstream tasks. For example, we achieve $\textbf{84.5\%}$ Top-1 accuracy on ImageNet-1K with ViT-B backbone, outperforming the competitive method BEiT by $\textbf{+1.3\%}$ under the same pre-training epochs. Our approach also gets significant improvement on object detection and segmentation on COCO and semantic segmentation on ADE20K. Equipped with a larger backbone ViT-H, we achieve the state-of-the-art ImageNet accuracy (\textbf{88.3\%}) among methods using only ImageNet-1K data.


Contrastive Learning Rivals Masked Image Modeling in Fine-tuning via Feature Distillation

arXiv.org Artificial Intelligence

Masked image modeling (MIM) learns representations with remarkably good fine-tuning performances, overshadowing previous prevalent pre-training approaches such as image classification, instance contrastive learning, and image-text alignment. In this paper, we show that the inferior fine-tuning performance of these pre-training approaches can be significantly improved by a simple post-processing in the form of feature distillation (FD). The feature distillation converts the old representations to new representations that have a few desirable properties just like those representations produced by MIM. These properties, which we aggregately refer to as optimization friendliness, are identified and analyzed by a set of attention- and optimization-related diagnosis tools. With these properties, the new representations show strong fine-tuning performance. Specifically, the contrastive self-supervised learning methods are made as competitive in fine-tuning as the state-of-the-art masked image modeling (MIM) algorithms. The CLIP models' fine-tuning performance is also significantly improved, with a CLIP ViT-L model reaching 89.0% top-1 accuracy on ImageNet-1K classification. On the 3-billion-parameter SwinV2-G model, the fine-tuning accuracy is improved by +1.5 mIoU / +1.1 mAP to 61.4 mIoU / 64.2 mAP on ADE20K semantic segmentation and COCO object detection, respectively, creating new records on both benchmarks. More importantly, our work provides a way for the future research to focus more effort on the generality and scalability of the learnt representations without being pre-occupied with optimization friendliness since it can be enhanced rather easily. The code will be available at https://github.com/SwinTransformer/Feature-Distillation.