Goto

Collaborating Authors

 Gui, Ning


Ordering-Based Causal Discovery for Linear and Nonlinear Relations

arXiv.org Artificial Intelligence

Identifying causal relations from purely observational data typically requires additional assumptions on relations and/or noise. Most current methods restrict their analysis to datasets that are assumed to have pure linear or nonlinear relations, which is often not reflective of real-world datasets that contain a combination of both. This paper presents CaPS, an ordering-based causal discovery algorithm that effectively handles linear and nonlinear relations. CaPS introduces a novel identification criterion for topological ordering and incorporates the concept of "parent score" during the post-processing optimization stage. These scores quantify the strength of the average causal effect, helping to accelerate the pruning process and correct inaccurate predictions in the pruning step. Experimental results demonstrate that our proposed solutions outperform state-of-the-art baselines on synthetic data with varying ratios of linear and nonlinear relations. The results obtained from real-world data also support the competitiveness of CaPS. Code and datasets are available at https://github.com/E2real/CaPS.


Frequency Adaptive Normalization For Non-stationary Time Series Forecasting

arXiv.org Artificial Intelligence

Time series forecasting typically needs to address non-stationary data with evolving trend and seasonal patterns. To address the non-stationarity, reversible instance normalization has been recently proposed to alleviate impacts from the trend with certain statistical measures, e.g., mean and variance. Although they demonstrate improved predictive accuracy, they are limited to expressing basic trends and are incapable of handling seasonal patterns. To address this limitation, this paper proposes a new instance normalization solution, called frequency adaptive normalization (FAN), which extends instance normalization in handling both dynamic trend and seasonal patterns. Specifically, we employ the Fourier transform to identify instance-wise predominant frequent components that cover most non-stationary factors. Furthermore, the discrepancy of those frequency components between inputs and outputs is explicitly modeled as a prediction task with a simple MLP model. FAN is a model-agnostic method that can be applied to arbitrary predictive backbones. We instantiate FAN on four widely used forecasting models as the backbone and evaluate their prediction performance improvements on eight benchmark datasets. FAN demonstrates significant performance advancement, achieving 7.76% ~ 37.90% average improvements in MSE.


Are Large Language Models Really Robust to Word-Level Perturbations?

arXiv.org Artificial Intelligence

The swift advancement in the scales and capabilities of Large Language Models (LLMs) positions them as promising tools for a variety of downstream tasks. In addition to the pursuit of better performance and the avoidance of violent feedback on a certain prompt, to ensure the responsibility of the LLM, much attention is drawn to the robustness of LLMs. However, existing evaluation methods mostly rely on traditional question answering datasets with predefined supervised labels, which do not align with the superior generation capabilities of contemporary LLMs. To address this issue, we propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools to evaluate the longer conversation generated from more challenging open questions by LLMs, which we refer to as the Reward Model for Reasonable Robustness Evaluation (TREvaL). Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions, a capability not entirely encompassed by individual words or letters, which may exhibit oversimplification and inherent biases. Our extensive empirical experiments demonstrate that TREvaL provides an innovative method for evaluating the robustness of an LLM. Furthermore, our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage. Notably, we are surprised to discover that robustness tends to decrease as fine-tuning (SFT and RLHF) is conducted. The code of TREval is available in https://github.com/Harry-mic/TREvaL.


Multi-View Graph Representation Learning Beyond Homophily

arXiv.org Artificial Intelligence

Unsupervised graph representation learning(GRL) aims to distill diverse graph information into task-agnostic embeddings without label supervision. Due to a lack of support from labels, recent representation learning methods usually adopt self-supervised learning, and embeddings are learned by solving a handcrafted auxiliary task(so-called pretext task). However, partially due to the irregular non-Euclidean data in graphs, the pretext tasks are generally designed under homophily assumptions and cornered in the low-frequency signals, which results in significant loss of other signals, especially high-frequency signals widespread in graphs with heterophily. Motivated by this limitation, we propose a multi-view perspective and the usage of diverse pretext tasks to capture different signals in graphs into embeddings. A novel framework, denoted as Multi-view Graph Encoder(MVGE), is proposed, and a set of key designs are identified. More specifically, a set of new pretext tasks are designed to encode different types of signals, and a straightforward operation is propxwosed to maintain both the commodity and personalization in both the attribute and the structural levels. Extensive experiments on synthetic and real-world network datasets show that the node representations learned with MVGE achieve significant performance improvements in three different downstream tasks, especially on graphs with heterophily. Source code is available at \url{https://github.com/G-AILab/MVGE}.


Data Imputation with Iterative Graph Reconstruction

arXiv.org Artificial Intelligence

Effective data imputation demands rich latent ``structure" discovery capabilities from ``plain" tabular data. Recent advances in graph neural networks-based data imputation solutions show their strong structure learning potential by directly translating tabular data as bipartite graphs. However, due to a lack of relations between samples, those solutions treat all samples equally which is against one important observation: ``similar sample should give more information about missing values." This paper presents a novel Iterative graph Generation and Reconstruction framework for Missing data imputation(IGRM). Instead of treating all samples equally, we introduce the concept: ``friend networks" to represent different relations among samples. To generate an accurate friend network with missing data, an end-to-end friend network reconstruction solution is designed to allow for continuous friend network optimization during imputation learning. The representation of the optimized friend network, in turn, is used to further optimize the data imputation process with differentiated message passing. Experiment results on eight benchmark datasets show that IGRM yields 39.13% lower mean absolute error compared with nine baselines and 9.04% lower than the second-best.


AFS: An Attention-based mechanism for Supervised Feature Selection

arXiv.org Artificial Intelligence

As an effective data preprocessing step, feature selection has shown its effectiveness to prepare high-dimensional data for many machine learning tasks. The proliferation of high di-mension and huge volume big data, however, has brought major challenges, e.g. computation complexity and stability on noisy data, upon existing feature-selection techniques. This paper introduces a novel neural network-based feature selection architecture, dubbed Attention-based Feature Selec-tion (AFS). AFS consists of two detachable modules: an at-tention module for feature weight generation and a learning module for the problem modeling. The attention module for-mulates correlation problem among features and supervision target into a binary classification problem, supported by a shallow attention net for each feature. Feature weights are generated based on the distribution of respective feature se-lection patterns adjusted by backpropagation during the train-ing process. The detachable structure allows existing off-the-shelf models to be directly reused, which allows for much less training time, demands for the training data and requirements for expertise. A hybrid initialization method is also intro-duced to boost the selection accuracy for datasets without enough samples for feature weight generation. Experimental results show that AFS achieves the best accuracy and stability in comparison to several state-of-art feature selection algo-rithms upon both MNIST, noisy MNIST and several datasets with small samples.