Plotting

 Gui, Lin


Beyond Prompting: An Efficient Embedding Framework for Open-Domain Question Answering

arXiv.org Artificial Intelligence

Large language models have recently pushed open domain question answering (ODQA) to new frontiers. However, prevailing retriever-reader pipelines often depend on multiple rounds of prompt level instructions, leading to high computational overhead, instability, and suboptimal retrieval coverage. In this paper, we propose EmbQA, an embedding-level framework that alleviates these shortcomings by enhancing both the retriever and the reader. Specifically, we refine query representations via lightweight linear layers under an unsupervised contrastive learning objective, thereby reordering retrieved passages to highlight those most likely to contain correct answers. Additionally, we introduce an exploratory embedding that broadens the model's latent semantic space to diversify candidate generation and employs an entropy-based selection mechanism to choose the most confident answer automatically. Extensive experiments across three open-source LLMs, three retrieval methods, and four ODQA benchmarks demonstrate that EmbQA substantially outperforms recent baselines in both accuracy and efficiency.


Two Heads Are Better Than One: Dual-Model Verbal Reflection at Inference-Time

arXiv.org Artificial Intelligence

Large Language Models (LLMs) often struggle with complex reasoning scenarios. While preference optimization methods enhance reasoning performance through training, they often lack transparency in why one reasoning outcome is preferred over another. Verbal reflection techniques improve explainability but are limited in LLMs' critique and refinement capacity. To address these challenges, we introduce a contrastive reflection synthesis pipeline that enhances the accuracy and depth of LLM-generated reflections. We further propose a dual-model reasoning framework within a verbal reinforcement learning paradigm, decoupling inference-time self-reflection into specialized, trained models for reasoning critique and refinement. Extensive experiments show that our framework outperforms traditional preference optimization methods across all evaluation metrics. Our findings also show that "two heads are better than one", demonstrating that a collaborative Reasoner-Critic model achieves superior reasoning performance and transparency, compared to single-model approaches.


RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following

arXiv.org Artificial Intelligence

Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.


Correcting Large Language Model Behavior via Influence Function

arXiv.org Artificial Intelligence

Recent advancements in AI alignment techniques have significantly improved the alignment of large language models (LLMs) with static human preferences. However, the dynamic nature of human preferences can render some prior training data outdated or even erroneous, ultimately causing LLMs to deviate from contemporary human preferences and societal norms. Existing methodologies, whether they involve the curation of new data for continual alignment or the manual correction of outdated data for re-alignment, demand costly human resources. To address this challenge, we propose a novel approach, Large Language Model Behavior Correction with Influence Function Recall and Post-Training (LANCET), which requires no human involvement. LANCET consists of two phases: (1) using influence functions to identify the training data that significantly impact undesirable model outputs, and (2) applying an Influence function-driven Bregman Optimization (IBO) technique to adjust the model's behavior based on these influence distributions. Our experiments demonstrate that LANCET effectively and efficiently correct inappropriate behaviors of LLMs. Furthermore, LANCET can outperform methods that rely on collecting human preferences, and it enhances the interpretability of learning human preferences within LLMs.


GARLIC: LLM-Guided Dynamic Progress Control with Hierarchical Weighted Graph for Long Document QA

arXiv.org Artificial Intelligence

In the past, Retrieval-Augmented Generation (RAG) methods split text into chunks to enable language models to handle long documents. Recent tree-based RAG methods are able to retrieve detailed information while preserving global context. However, with the advent of more powerful LLMs, such as Llama 3.1, which offer better comprehension and support for longer inputs, we found that even recent tree-based RAG methods perform worse than directly feeding the entire document into Llama 3.1, although RAG methods still hold an advantage in reducing computational costs. In this paper, we propose a new retrieval method, called LLM-Guided Dynamic Progress Control with Hierarchical Weighted Graph (GARLIC), which outperforms previous state-of-the-art baselines, including Llama 3.1, while retaining the computational efficiency of RAG methods. Our method introduces several improvements: (1) Rather than using a tree structure, we construct a Hierarchical Weighted Directed Acyclic Graph with many-to-many summarization, where the graph edges are derived from attention mechanisms, and each node focuses on a single event or very few events. (2) We introduce a novel retrieval method that leverages the attention weights of LLMs rather than dense embedding similarity. Our method allows for searching the graph along multiple paths and can terminate at any depth. (3) We use the LLM to control the retrieval process, enabling it to dynamically adjust the amount and depth of information retrieved for different queries. Experimental results show that our method outperforms previous state-of-the-art baselines, including Llama 3.1, on two single-document and two multi-document QA datasets, while maintaining similar computational complexity to traditional RAG methods.


Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems

arXiv.org Artificial Intelligence

The inherent ambiguity of cause and effect boundaries poses a challenge in evaluating causal event extraction tasks. Traditional metrics like Exact Match and BertScore poorly reflect model performance, so we trained evaluation models to approximate human evaluation, achieving high agreement. We used them to perform Reinforcement Learning with extraction models to align them with human preference, prioritising semantic understanding. We successfully explored our approach through multiple datasets, including transferring an evaluator trained on one dataset to another as a way to decrease the reliance on human-annotated data. In that vein, we also propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model while still achieving high performance in training an RL model. Our code is available at https://github.com/oyarsa/event_extraction/tree/causal-event-extraction.


Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective

arXiv.org Artificial Intelligence

To better interpret the intrinsic mechanism of large language models (LLMs), recent studies focus on monosemanticity on its basic units. A monosemantic neuron is dedicated to a single and specific concept, which forms a one-to-one correlation between neurons and concepts. Despite extensive research in monosemanticity probing, it remains unclear whether monosemanticity is beneficial or harmful to model capacity. To explore this question, we revisit monosemanticity from the feature decorrelation perspective and advocate for its encouragement. We experimentally observe that the current conclusion by wang2024learning, which suggests that decreasing monosemanticity enhances model performance, does not hold when the model changes. Instead, we demonstrate that monosemanticity consistently exhibits a positive correlation with model capacity, in the preference alignment process. Consequently, we apply feature correlation as a proxy for monosemanticity and incorporate a feature decorrelation regularizer into the dynamic preference optimization process. The experiments show that our method not only enhances representation diversity and activation sparsity but also improves preference alignment performance.


PLAYER*: Enhancing LLM-based Multi-Agent Communication and Interaction in Murder Mystery Games

arXiv.org Artificial Intelligence

We propose PLAYER*, a novel framework that addresses the limitations of existing agent-based approaches built on Large Language Models (LLMs) in handling complex questions and understanding interpersonal relationships in dynamic environments. PLAYER* enhances path planning in Murder Mystery Games (MMGs) using an anytime sampling-based planner and a questioning-driven search framework. By equipping agents with a set of sensors, PLAYER* eliminates the need for pre-defined questions and enables agents to navigate complex social interactions. We additionally make a contribution by introducing a quantifiable evaluation method using multiple-choice questions and present WellPlay, a dataset containing 1,482 question-answer pairs. Experimental results demonstrate PLAYER*'s superiority over existing multi-agent methods, enhancing the generalisability and adaptability of agents in MMGs and paving the way for more effective multi-agent interactions.


Multi-Layer Ranking with Large Language Models for News Source Recommendation

arXiv.org Artificial Intelligence

To seek reliable information sources for news events, we introduce a novel task of expert recommendation, which aims to identify trustworthy sources based on their previously quoted statements. To achieve this, we built a novel dataset, called NewsQuote, consisting of 23,571 quote-speaker pairs sourced from a collection of news articles. We formulate the recommendation task as the retrieval of experts based on their likelihood of being associated with a given query. We also propose a multi-layer ranking framework employing Large Language Models to improve the recommendation performance. Our results show that employing an in-context learning based LLM ranker and a multi-layer ranking-based filter significantly improve both the predictive quality and behavioural quality of the recommender system.


Mitigating Biases of Large Language Models in Stance Detection with Calibration

arXiv.org Artificial Intelligence

Large language models (LLMs) have achieved remarkable progress in many natural language processing tasks. However, our experiment reveals that, in stance detection tasks, LLMs may generate biased stances due to sentiment-stance spurious correlations and preference towards certain individuals and topics, thus harming their performance. Therefore, in this paper, we propose to Mitigate Biases of LLMs in stance detection with Calibration (MB-Cal). To be specific, a novel calibration network is devised to calibrate potential bias in the stance prediction of LLMs. Further, to address the challenge of effectively learning bias representations and the difficulty in the generalizability of debiasing, we construct counterfactual augmented data. This approach enhances the calibration network, facilitating the debiasing and out-of-domain generalization. Experimental results on in-target and zero-shot stance detection tasks show that the proposed MB-Cal can effectively mitigate biases of LLMs, achieving state-of-the-art results.