Guan, Jian
From 1,000,000 Users to Every User: Scaling Up Personalized Preference for User-level Alignment
Li, Jia-Nan, Guan, Jian, Wu, Songhao, Wu, Wei, Yan, Rui
Large language models (LLMs) have traditionally been aligned through one-size-fits-all approaches that assume uniform human preferences, fundamentally overlooking the diversity in user values and needs. This paper introduces a comprehensive framework for scalable personalized alignment of LLMs. We establish a systematic preference space characterizing psychological and behavioral dimensions, alongside diverse persona representations for robust preference inference in real-world scenarios. Building upon this foundation, we introduce \textsc{AlignX}, a large-scale dataset of over 1.3 million personalized preference examples, and develop two complementary alignment approaches: \textit{in-context alignment} directly conditioning on persona representations and \textit{preference-bridged alignment} modeling intermediate preference distributions. Extensive experiments demonstrate substantial improvements over existing methods, with an average 17.06\% accuracy gain across four benchmarks while exhibiting a strong adaptation capability to novel preferences, robustness to limited user data, and precise preference controllability. These results validate our framework's effectiveness, advancing toward truly user-adaptive AI systems.
A Survey on Personalized Alignment -- The Missing Piece for Large Language Models in Real-World Applications
Guan, Jian, Wu, Junfei, Li, Jia-Nan, Cheng, Chuanqi, Wu, Wei
Large Language Models (LLMs) have demonstrated remarkable capabilities, yet their transition to real-world applications reveals a critical limitation: the inability to adapt to individual preferences while maintaining alignment with universal human values. Current alignment techniques adopt a one-size-fits-all approach that fails to accommodate users' diverse backgrounds and needs. This paper presents the first comprehensive survey of personalized alignment-a paradigm that enables LLMs to adapt their behavior within ethical boundaries based on individual preferences. We propose a unified framework comprising preference memory management, personalized generation, and feedback-based alignment, systematically analyzing implementation approaches and evaluating their effectiveness across various scenarios. By examining current techniques, potential risks, and future challenges, this survey provides a structured foundation for developing more adaptable and ethically-aligned LLMs.
Align Your Rhythm: Generating Highly Aligned Dance Poses with Gating-Enhanced Rhythm-Aware Feature Representation
Fan, Congyi, Guan, Jian, Zhao, Xuanjia, Xu, Dongli, Lin, Youtian, Ye, Tong, Feng, Pengming, Pan, Haiwei
Automatically generating natural, diverse and rhythmic human dance movements driven by music is vital for virtual reality and film industries. However, generating dance that naturally follows music remains a challenge, as existing methods lack proper beat alignment and exhibit unnatural motion dynamics. In this paper, we propose Danceba, a novel framework that leverages gating mechanism to enhance rhythm-aware feature representation for music-driven dance generation, which achieves highly aligned dance poses with enhanced rhythmic sensitivity. Specifically, we introduce Phase-Based Rhythm Extraction (PRE) to precisely extract rhythmic information from musical phase data, capitalizing on the intrinsic periodicity and temporal structures of music. Additionally, we propose Temporal-Gated Causal Attention (TGCA) to focus on global rhythmic features, ensuring that dance movements closely follow the musical rhythm. We also introduce Parallel Mamba Motion Modeling (PMMM) architecture to separately model upper and lower body motions along with musical features, thereby improving the naturalness and diversity of generated dance movements. Extensive experiments confirm that Danceba outperforms state-of-the-art methods, achieving significantly better rhythmic alignment and motion diversity. Project page: https://danceba.github.io/ .
Theoretical Benefit and Limitation of Diffusion Language Model
Feng, Guhao, Geng, Yihan, Guan, Jian, Wu, Wei, Wang, Liwei, He, Di
Diffusion language models have emerged as a promising approach for text generation. One would naturally expect this method to be an efficient replacement for autoregressive models since multiple tokens can be sampled in parallel during each diffusion step. However, its efficiency-accuracy trade-off is not yet well understood. In this paper, we present a rigorous theoretical analysis of a widely used type of diffusion language model, the Masked Diffusion Model (MDM), and find that its effectiveness heavily depends on the target evaluation metric. Under mild conditions, we prove that when using perplexity as the metric, MDMs can achieve near-optimal perplexity in sampling steps regardless of sequence length, demonstrating that efficiency can be achieved without sacrificing performance. However, when using the sequence error rate--which is important for understanding the "correctness" of a sequence, such as a reasoning chain--we show that the required sampling steps must scale linearly with sequence length to obtain "correct" sequences, thereby eliminating MDM's efficiency advantage over autoregressive models. Our analysis establishes the first theoretical foundation for understanding the benefits and limitations of MDMs. All theoretical findings are supported by empirical studies.
Human Decision-making is Susceptible to AI-driven Manipulation
Sabour, Sahand, Liu, June M., Liu, Siyang, Yao, Chris Z., Cui, Shiyao, Zhang, Xuanming, Zhang, Wen, Cao, Yaru, Bhat, Advait, Guan, Jian, Wu, Wei, Mihalcea, Rada, Althoff, Tim, Lee, Tatia M. C., Huang, Minlie
Artificial Intelligence (AI) systems are increasingly intertwined with daily life, assisting users in executing various tasks and providing guidance on decision-making. This integration introduces risks of AI-driven manipulation, where such systems may exploit users' cognitive biases and emotional vulnerabilities to steer them toward harmful outcomes. Through a randomized controlled trial with 233 participants, we examined human susceptibility to such manipulation in financial (e.g., purchases) and emotional (e.g., conflict resolution) decision-making contexts. Participants interacted with one of three AI agents: a neutral agent (NA) optimizing for user benefit without explicit influence, a manipulative agent (MA) designed to covertly influence beliefs and behaviors, or a strategy-enhanced manipulative agent (SEMA) employing explicit psychological tactics to reach its hidden objectives. By analyzing participants' decision patterns and shifts in their preference ratings post-interaction, we found significant susceptibility to AI-driven manipulation. Particularly, across both decision-making domains, participants interacting with the manipulative agents shifted toward harmful options at substantially higher rates (financial, MA: 62.3%, SEMA: 59.6%; emotional, MA: 42.3%, SEMA: 41.5%) compared to the NA group (financial, 35.8%; emotional, 12.8%). Notably, our findings reveal that even subtle manipulative objectives (MA) can be as effective as employing explicit psychological strategies (SEMA) in swaying human decision-making. By revealing the potential for covert AI influence, this study highlights a critical vulnerability in human-AI interactions, emphasizing the need for ethical safeguards and regulatory frameworks to ensure responsible deployment of AI technologies and protect human autonomy.
2D-TPE: Two-Dimensional Positional Encoding Enhances Table Understanding for Large Language Models
Li, Jia-Nan, Guan, Jian, Wu, Wei, Yu, Zhengtao, Yan, Rui
Tables are ubiquitous across various domains for concisely representing structured information. Empowering large language models (LLMs) to reason over tabular data represents an actively explored direction. However, since typical LLMs only support one-dimensional~(1D) inputs, existing methods often flatten the two-dimensional~(2D) table structure into a sequence of tokens, which can severely disrupt the spatial relationships and result in an inevitable loss of vital contextual information. In this paper, we first empirically demonstrate the detrimental impact of such flattening operations on the performance of LLMs in capturing the spatial information of tables through two elaborate proxy tasks. Subsequently, we introduce a simple yet effective positional encoding method, termed ``2D-TPE'' (Two-Dimensional Table Positional Encoding), to address this challenge. 2D-TPE enables each attention head to dynamically select a permutation order of tokens within the context for attending to them, where each permutation represents a distinct traversal mode for the table, such as column-wise or row-wise traversal. 2D-TPE effectively mitigates the risk of losing essential spatial information while preserving computational efficiency, thus better preserving the table structure. Extensive experiments across five benchmarks demonstrate that 2D-TPE outperforms strong baselines, underscoring the importance of preserving the table structure for accurate table comprehension. Comprehensive analysis further reveals the substantially better scalability of 2D-TPE to large tables than baselines.
Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules
Gong, Zhuocheng, Lv, Ang, Guan, Jian, Yan, Junxi, Wu, Wei, Zhang, Huishuai, Huang, Minlie, Zhao, Dongyan, Yan, Rui
Is it always necessary to compute tokens from shallow to deep layers in Transformers? The continued success of vanilla Transformers and their variants suggests an undoubted "yes". In this work, however, we attempt to break the depth-ordered convention by proposing a novel architecture dubbed mixture-of-modules (MoM), which is motivated by an intuition that any layer, regardless of its position, can be used to compute a token as long as it possesses the needed processing capabilities. The construction of MoM starts from a finite set of modules defined by multi-head attention and feed-forward networks, each distinguished by its unique parameterization. Two routers then iteratively select attention modules and feed-forward modules from the set to process a token. The selection dynamically expands the computation graph in the forward pass of the token, culminating in an assembly of modules. We show that MoM provides not only a unified framework for Transformers and their numerous variants but also a flexible and learnable approach for reducing redundancy in Transformer parameterization. We pre-train various MoMs using OpenWebText. Empirical results demonstrate that MoMs, of different parameter counts, consistently outperform vanilla transformers on both GLUE and XSUM benchmarks. More interestingly, with a fixed parameter budget, MoM-large enables an over 38% increase in depth for computation graphs compared to GPT-2-large, resulting in absolute gains of 1.4 on GLUE and 1 on XSUM. On the other hand, MoM-large also enables an over 60% reduction in depth while involving more modules per layer, yielding a 16% reduction in TFLOPs and a 43% decrease in memory usage compared to GPT-2-large, while maintaining comparable performance.
From the Least to the Most: Building a Plug-and-Play Visual Reasoner via Data Synthesis
Cheng, Chuanqi, Guan, Jian, Wu, Wei, Yan, Rui
We explore multi-step reasoning in vision-language models (VLMs). The problem is challenging, as reasoning data consisting of multiple steps of visual and language processing are barely available. To overcome the challenge, we first introduce a least-to-most visual reasoning paradigm, which interleaves steps of decomposing a question into sub-questions and invoking external tools for resolving sub-questions. Based on the paradigm, we further propose a novel data synthesis approach that can automatically create questions and multi-step reasoning paths for an image in a bottom-up manner. Our approach divides the complex synthesis task into a few simple sub-tasks, and (almost entirely) relies on open-sourced models to accomplish the sub-tasks. Therefore, the entire synthesis process is reproducible and cost-efficient, and the synthesized data is quality guaranteed. With the approach, we construct $50$k visual reasoning examples. Then, we develop a visual reasoner through supervised fine-tuning, which is capable of generally enhancing the reasoning abilities of a wide range of existing VLMs in a plug-and-play fashion. Extensive experiments indicate that the visual reasoner can consistently and significantly improve four VLMs on four VQA benchmarks. Our code and dataset are available at https://github.com/steven-ccq/VisualReasoner.
AMOR: A Recipe for Building Adaptable Modular Knowledge Agents Through Process Feedback
Guan, Jian, Wu, Wei, Wen, Zujie, Xu, Peng, Wang, Hongning, Huang, Minlie
The notable success of large language models (LLMs) has sparked an upsurge in building language agents to complete various complex tasks. We present AMOR, an agent framework based on open-source LLMs, which reasons with external knowledge bases and adapts to specific domains through human supervision to the reasoning process. AMOR builds reasoning logic over a finite state machine (FSM) that solves problems through autonomous executions and transitions over disentangled modules. This allows humans to provide direct feedback to the individual modules, and thus naturally forms process supervision. Based on this reasoning and feedback framework, we develop AMOR through two-stage fine-tuning: warm-up and adaptation. The former fine-tunes the LLM with examples automatically constructed from various public datasets and enables AMOR to generalize across different knowledge environments, while the latter tailors AMOR to specific domains using process feedback. Extensive experiments across multiple domains demonstrate the advantage of AMOR to strong baselines, thanks to its FSM-based reasoning and process feedback mechanism.
Language Models Hallucinate, but May Excel at Fact Verification
Guan, Jian, Dodge, Jesse, Wadden, David, Huang, Minlie, Peng, Hao
Recent progress in natural language processing (NLP) owes much to remarkable advances in large language models (LLMs). Nevertheless, LLMs frequently "hallucinate," resulting in non-factual outputs. Our carefully designed human evaluation substantiates the serious hallucination issue, revealing that even GPT-3.5 produces factual outputs less than 25% of the time. This underscores the importance of fact verifiers in order to measure and incentivize progress. Our systematic investigation affirms that LLMs can be repurposed as effective fact verifiers with strong correlations with human judgments, at least in the Wikipedia domain. Surprisingly, FLAN-T5-11B, the least factual generator in our study, performs the best as a fact verifier, even outperforming more capable LLMs like GPT3.5 and ChatGPT. Delving deeper, we analyze the reliance of these LLMs on high-quality evidence, as well as their deficiencies in robustness and generalization ability. Our study presents insights for developing trustworthy generation models.