Goto

Collaborating Authors

 Guan, Hui


Aligned Vector Quantization for Edge-Cloud Collabrative Vision-Language Models

arXiv.org Artificial Intelligence

Vision Language Models (VLMs) are central to Visual Question Answering (VQA) systems and are typically deployed in the cloud due to their high computational demands. However, this cloud-only approach underutilizes edge computational resources and requires significant bandwidth for transmitting raw images. In this paper, we introduce an edge-cloud collaborative VQA system, called LLaVA-AlignedVQ, which features a novel Aligned Vector Quantization algorithm (AlignedVQ) that efficiently compress intermediate features without compromising accuracy to support partitioned execution. Our experiments demonstrate that LLaVA-AlignedVQ achieves approximately 1365x compression rate of intermediate features, reducing data transmission overhead by 96.8% compared to transmitting JPEG90-compressed images to the cloud. LLaVA-AlignedVQ achieves an inference speedup of 2-15x while maintaining high accuracy, remaining within -2.23% to +1.6% of the original model's accuracy performance across eight VQA datasets, compared to the cloud-only solution.


Understanding and Alleviating Memory Consumption in RLHF for LLMs

arXiv.org Artificial Intelligence

Fine-tuning with Reinforcement Learning with Human Feedback (RLHF) is essential for aligning large language models (LLMs). However, RLHF often encounters significant memory challenges. This study is the first to examine memory usage in the RLHF context, exploring various memory management strategies and unveiling the reasons behind excessive memory consumption. Additionally, we introduce a simple yet effective approach that substantially reduces the memory required for RLHF fine-tuning.


ProTrain: Efficient LLM Training via Memory-Aware Techniques

arXiv.org Artificial Intelligence

It is extremely memory-hungry to train Large Language Models (LLM). To solve this problem, existing work exploits the combination of CPU and GPU for the training process, such as ZeRO-Offload. Such a technique largely democratizes billion-scale model training, making it possible to train with few consumer graphics cards. However, based on our observation, existing frameworks often provide coarse-grained memory management and require experienced experts in configuration tuning, leading to suboptimal hardware utilization and performance. This paper proposes ProTrain, a novel training system that intelligently balances memory usage and performance by coordinating memory, computation, and IO. ProTrain achieves adaptive memory management through Chunk-Based Model State Management and Block-Wise Activation Management, guided by a Memory-Aware Runtime Profiler without user intervention. ProTrain does not change the training algorithm and thus does not compromise accuracy. Experiments show that ProTrain improves training throughput by 1.43$\times$ to 2.71$\times$ compared to the SOTA training systems.


Graph Neural Network Training Systems: A Performance Comparison of Full-Graph and Mini-Batch

arXiv.org Artificial Intelligence

Graph Neural Networks (GNNs) have gained significant attention in recent years due to their ability to learn representations of graph structured data. Two common methods for training GNNs are mini-batch training and full-graph training. Since these two methods require different training pipelines and systems optimizations, two separate categories of GNN training systems emerged, each tailored for one method. Works that introduce systems belonging to a particular category predominantly compare them with other systems within the same category, offering limited or no comparison with systems from the other category. Some prior work also justifies its focus on one specific training method by arguing that it achieves higher accuracy than the alternative. The literature, however, has incomplete and contradictory evidence in this regard. In this paper, we provide a comprehensive empirical comparison of full-graph and mini-batch GNN training systems to get a clearer picture of the state of the art in the field. We find that the mini-batch training systems we consider consistently converge faster than the full-graph training ones across multiple datasets, GNN models, and system configurations, with speedups between 2.4x - 15.2x. We also find that both training techniques converge to similar accuracy values, so comparing systems across the two categories in terms of time-to-accuracy is a sound approach.


Thinking Forward: Memory-Efficient Federated Finetuning of Language Models

arXiv.org Artificial Intelligence

Finetuning large language models (LLMs) in federated learning (FL) settings has become important as it allows resource-constrained devices to finetune a model using private data. However, finetuning LLMs using backpropagation requires excessive memory (especially from intermediate activations) for resource-constrained devices. While Forward-mode Auto-Differentiation (AD) can reduce memory footprint from activations, we observe that directly applying it to LLM finetuning results in slow convergence and poor accuracy. This work introduces Spry, an FL algorithm that splits trainable weights of an LLM among participating clients, such that each client computes gradients using Forward-mode AD that are closer estimates of the true gradients. Spry achieves a low memory footprint, high accuracy, and fast convergence. We theoretically show that the global gradients in Spry are unbiased estimates of true global gradients for homogeneous data distributions across clients, while heterogeneity increases bias of the estimates. We also derive Spry's convergence rate, showing that the gradients decrease inversely proportional to the number of FL rounds, indicating the convergence up to the limits of heterogeneity. Empirically, Spry reduces the memory footprint during training by 1.4-7.1$\times$ in contrast to backpropagation, while reaching comparable accuracy, across a wide range of language tasks, models, and FL settings. Spry reduces the convergence time by 1.2-20.3$\times$ and achieves 5.2-13.5\% higher accuracy against state-of-the-art zero-order methods. When finetuning Llama2-7B with LoRA, compared to the peak memory usage of 33.9GB of backpropagation, Spry only consumes 6.2GB of peak memory. For OPT13B, the reduction is from 76.5GB to 10.8GB. Spry makes feasible previously impossible FL deployments on commodity mobile and edge devices. Source code is available at https://github.com/Astuary/Spry.


Robust Image Watermarking using Stable Diffusion

arXiv.org Artificial Intelligence

Watermarking images is critical for tracking image provenance and claiming ownership. With the advent of generative models, such as stable diffusion, able to create fake but realistic images, watermarking has become particularly important, e.g., to make generated images reliably identifiable. Unfortunately, the very same stable diffusion technology can remove watermarks injected using existing methods. To address this problem, we present a ZoDiac, which uses a pre-trained stable diffusion model to inject a watermark into the trainable latent space, resulting in watermarks that can be reliably detected in the latent vector, even when attacked. We evaluate ZoDiac on three benchmarks, MS-COCO, DiffusionDB, and WikiArt, and find that ZoDiac is robust against state-of-the-art watermark attacks, with a watermark detection rate over 98% and a false positive rate below 6.4%, outperforming state-of-the-art watermarking methods. Our research demonstrates that stable diffusion is a promising approach to robust watermarking, able to withstand even stable-diffusion-based attacks.


Multi-Task Models Adversarial Attacks

arXiv.org Artificial Intelligence

Multi-Task Learning (MTL) involves developing a singular model, known as a multi-task model, to concurrently perform multiple tasks. While the security of single-task models has been thoroughly studied, multi-task models pose several critical security questions, such as 1) their vulnerability to single-task adversarial attacks, 2) the possibility of designing attacks that target multiple tasks, and 3) the impact of task sharing and adversarial training on their resilience to such attacks. This paper addresses these queries through detailed analysis and rigorous experimentation. First, we explore the adaptation of single-task white-box attacks to multi-task models and identify their limitations. We then introduce a novel attack framework, the Gradient Balancing Multi-Task Attack (GB-MTA), which treats attacking a multi-task model as an optimization problem. This problem, based on averaged relative loss change across tasks, is approximated as an integer linear programming problem. Extensive evaluations on MTL benchmarks, NYUv2 and Tiny-Taxonomy, demonstrate GB-MTA's effectiveness against both standard and adversarially trained multi-task models. The results also highlight a trade-off between task accuracy improvement via parameter sharing and increased model vulnerability due to enhanced attack transferability.


Efficient IoT Inference via Context-Awareness

arXiv.org Artificial Intelligence

While existing strategies to execute deep learning-based classification on low-power platforms assume the models are trained on all classes of interest, this paper posits that adopting context-awareness i.e. narrowing down a classification task to the current deployment context consisting of only recent inference queries can substantially enhance performance in resource-constrained environments. We propose a new paradigm, CACTUS, for scalable and efficient context-aware classification where a micro-classifier recognizes a small set of classes relevant to the current context and, when context change happens (e.g., a new class comes into the scene), rapidly switches to another suitable micro-classifier. CACTUS features several innovations, including optimizing the training cost of context-aware classifiers, enabling on-the-fly context-aware switching between classifiers, and balancing context switching costs and performance gains via simple yet effective switching policies. We show that CACTUS achieves significant benefits in accuracy, latency, and compute budget across a range of datasets and IoT platforms.


Automatically Marginalized MCMC in Probabilistic Programming

arXiv.org Artificial Intelligence

Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from Bayesian models. The advent of probabilistic programming languages (PPLs) frees users from writing inference algorithms and lets users focus on modeling. However, many models are difficult for HMC to solve directly, and often require tricks like model reparameterization. We are motivated by the fact that many of those models could be simplified by marginalization. We propose to use automatic marginalization as part of the sampling process using HMC in a graphical model extracted from a PPL, which substantially improves sampling from real-world hierarchical models.


Structured Pruning for Multi-Task Deep Neural Networks

arXiv.org Artificial Intelligence

Although multi-task deep neural network (DNN) models have computation and storage benefits over individual single-task DNN models, they can be further optimized via model compression. Numerous structured pruning methods are already developed that can readily achieve speedups in single-task models, but the pruning of multi-task networks has not yet been extensively studied. In this work, we investigate the effectiveness of structured pruning on multi-task models. We use an existing single-task filter pruning criterion and also introduce an MTL-based filter pruning criterion for estimating the filter importance scores. We prune the model using an iterative pruning strategy with both pruning methods. We show that, with careful hyper-parameter tuning, architectures obtained from different pruning methods do not have significant differences in their performances across tasks when the number of parameters is similar. We also show that iterative structure pruning may not be the best way to achieve a well-performing pruned model because, at extreme pruning levels, there is a high drop in performance across all tasks. But when the same models are randomly initialized and re-trained, they show better results.