Grinspun, Eitan
Neural Stress Fields for Reduced-order Elastoplasticity and Fracture
Zong, Zeshun, Li, Xuan, Li, Minchen, Chiaramonte, Maurizio M., Matusik, Wojciech, Grinspun, Eitan, Carlberg, Kevin, Jiang, Chenfanfu, Chen, Peter Yichen
We propose a hybrid neural network and physics framework for reduced-order modeling of elastoplasticity and fracture. State-of-the-art scientific computing models like the Material Point Method (MPM) faithfully simulate large-deformation elastoplasticity and fracture mechanics. However, their long runtime and large memory consumption render them unsuitable for applications constrained by computation time and memory usage, e.g., virtual reality. To overcome these barriers, we propose a reduced-order framework. Our key innovation is training a low-dimensional manifold for the Kirchhoff stress field via an implicit neural representation. This low-dimensional neural stress field (NSF) enables efficient evaluations of stress values and, correspondingly, internal forces at arbitrary spatial locations. In addition, we also train neural deformation and affine fields to build low-dimensional manifolds for the deformation and affine momentum fields. These neural stress, deformation, and affine fields share the same low-dimensional latent space, which uniquely embeds the high-dimensional simulation state. After training, we run new simulations by evolving in this single latent space, which drastically reduces the computation time and memory consumption. Our general continuum-mechanics-based reduced-order framework is applicable to any phenomena governed by the elastodynamics equation. To showcase the versatility of our framework, we simulate a wide range of material behaviors, including elastica, sand, metal, non-Newtonian fluids, fracture, contact, and collision. We demonstrate dimension reduction by up to 100,000X and time savings by up to 10X.
Implicit Neural Spatial Representations for Time-dependent PDEs
Chen, Honglin, Wu, Rundi, Grinspun, Eitan, Zheng, Changxi, Chen, Peter Yichen
Implicit Neural Spatial Representation (INSR) has emerged as an effective representation of spatially-dependent vector fields. This work explores solving time-dependent PDEs with INSR. Classical PDE solvers introduce both temporal and spatial discretizations. Common spatial discretizations include meshes and meshless point clouds, where each degree-of-freedom corresponds to a location in space. While these explicit spatial correspondences are intuitive to model and understand, these representations are not necessarily optimal for accuracy, memory usage, or adaptivity. Keeping the classical temporal discretization unchanged (e.g., explicit/implicit Euler), we explore INSR as an alternative spatial discretization, where spatial information is implicitly stored in the neural network weights. The network weights then evolve over time via time integration. Our approach does not require any training data generated by existing solvers because our approach is the solver itself. We validate our approach on various PDEs with examples involving large elastic deformations, turbulent fluids, and multi-scale phenomena. While slower to compute than traditional representations, our approach exhibits higher accuracy and lower memory consumption. Whereas classical solvers can dynamically adapt their spatial representation only by resorting to complex remeshing algorithms, our INSR approach is intrinsically adaptive. By tapping into the rich literature of classic time integrators, e.g., operator-splitting schemes, our method enables challenging simulations in contact mechanics and turbulent flows where previous neural-physics approaches struggle. Videos and codes are available on the project page: http://www.cs.columbia.edu/cg/INSR-PDE/
CROM: Continuous Reduced-Order Modeling of PDEs Using Implicit Neural Representations
Chen, Peter Yichen, Xiang, Jinxu, Cho, Dong Heon, Chang, Yue, Pershing, G A, Maia, Henrique Teles, Chiaramonte, Maurizio M., Carlberg, Kevin, Grinspun, Eitan
The long runtime of high-fidelity partial differential equation (PDE) solvers makes them unsuitable for time-critical applications. We propose to accelerate PDE solvers using reduced-order modeling (ROM). Whereas prior ROM approaches reduce the dimensionality of discretized vector fields, our continuous reduced-order modeling (CROM) approach builds a low-dimensional embedding of the continuous vector fields themselves, not their discretization. We represent this reduced manifold using continuously differentiable neural fields, which may train on any and all available numerical solutions of the continuous system, even when they are obtained using diverse methods or discretizations. We validate our approach on an extensive range of PDEs with training data from voxel grids, meshes, and point clouds. Compared to prior discretization-dependent ROM methods, such as linear subspace proper orthogonal decomposition (POD) and nonlinear manifold neural-network-based autoencoders, CROM features higher accuracy, lower memory consumption, dynamically adaptive resolutions, and applicability to any discretization. For equal latent space dimension, CROM exhibits 79$\times$ and 49$\times$ better accuracy, and 39$\times$ and 132$\times$ smaller memory footprint, than POD and autoencoder methods, respectively. Experiments demonstrate 109$\times$ and 89$\times$ wall-clock speedups over unreduced models on CPUs and GPUs, respectively. Videos and codes are available on the project page: https://crom-pde.github.io
Model reduction for the material point method via an implicit neural representation of the deformation map
Chen, Peter Yichen, Chiaramonte, Maurizio M., Grinspun, Eitan, Carlberg, Kevin
This work proposes a model-reduction approach for the material point method on nonlinear manifolds. Our technique approximates the $\textit{kinematics}$ by approximating the deformation map using an implicit neural representation that restricts deformation trajectories to reside on a low-dimensional manifold. By explicitly approximating the deformation map, its spatiotemporal gradients -- in particular the deformation gradient and the velocity -- can be computed via analytical differentiation. In contrast to typical model-reduction techniques that construct a linear or nonlinear manifold to approximate the (finite number of) degrees of freedom characterizing a given spatial discretization, the use of an implicit neural representation enables the proposed method to approximate the $\textit{continuous}$ deformation map. This allows the kinematic approximation to remain agnostic to the discretization. Consequently, the technique supports dynamic discretizations -- including resolution changes -- during the course of the online reduced-order-model simulation. To generate $\textit{dynamics}$ for the generalized coordinates, we propose a family of projection techniques. At each time step, these techniques: (1) Calculate full-space kinematics at quadrature points, (2) Calculate the full-space dynamics for a subset of `sample' material points, and (3) Calculate the reduced-space dynamics by projecting the updated full-space position and velocity onto the low-dimensional manifold and tangent space, respectively. We achieve significant computational speedup via hyper-reduction that ensures all three steps execute on only a small subset of the problem's spatial domain. Large-scale numerical examples with millions of material points illustrate the method's ability to gain an order of magnitude computational-cost saving -- indeed $\textit{real-time simulations}$ -- with negligible errors.