Goto

Collaborating Authors

 Grassucci, Eleonora


Gramian Multimodal Representation Learning and Alignment

arXiv.org Artificial Intelligence

While recent multimodal models have achieved significant progress by aligning pairs of modalities via contrastive learning, their solutions are unsuitable when scaling to multiple modalities. These models typically align each modality to a designated anchor without ensuring the alignment of all modalities with each other, leading to suboptimal performance in tasks requiring a joint understanding of multiple modalities. In this paper, we structurally rethink the pairwise conventional approach to multimodal learning and we present the novel Gramian Representation Alignment Measure (GRAM), which overcomes the above-mentioned limitations. GRAM learns and then aligns n modalities directly in the higher-dimensional space in which modality embeddings lie by minimizing the Gramian volume of the k-dimensional parallelotope spanned by the modality vectors, ensuring the geometric alignment of all modalities simultaneously. GRAM can replace cosine similarity in any downstream method, holding for 2 to n modality and providing more meaningful alignment with respect to previous similarity measures. The novel GRAM-based contrastive loss function enhances the alignment of multimodal models in the higher-dimensional embedding space, leading to new stateof-the-art performance in downstream tasks such as video-audio-text retrieval and audio-video classification. The project page, the code and the pretrained models are available at https://ispamm.github.io/GRAM/. Humans naturally process and integrate signals from multiple sensory modalities, such as sounds and visual inputs, to form a coherent understanding of the world around them. Inspired by this, foundational models have attempted to replicate this capability by aligning pairs of modalities, such as vision and language, through contrastive learning techniques. One of the most significant contributions in this domain was CLIP Radford et al. (2021), which used a contrastive loss to align image and text representations based on cosine similarity. CLIP has shaped the current approach to multimodal learning, and every subsequent model relies on the same contrastive-pairs fashion, even in the case of models involving more than two modalities, such as ImageBind Girdhar et al. (2023), VAST Chen et al. (2023c), and LanguageBind Zhu et al. (2024).


Rethinking Multi-User Semantic Communications with Deep Generative Models

arXiv.org Artificial Intelligence

In recent years, novel communication strategies have emerged to face the challenges that the increased number of connected devices and the higher quality of transmitted information are posing. Among them, semantic communication obtained promising results especially when combined with state-of-the-art deep generative models, such as large language or diffusion models, able to regenerate content from extremely compressed semantic information. However, most of these approaches focus on single-user scenarios processing the received content at the receiver on top of conventional communication systems. In this paper, we propose to go beyond these methods by developing a novel generative semantic communication framework tailored for multi-user scenarios. This system assigns the channel to users knowing that the lost information can be filled in with a diffusion model at the receivers. Under this innovative perspective, OFDMA systems should not aim to transmit the largest part of information, but solely the bits necessary to the generative model to semantically regenerate the missing ones. The thorough experimental evaluation shows the capabilities of the novel diffusion model and the effectiveness of the proposed framework, leading towards a GenAI-based next generation of communications.


Demystifying the Hypercomplex: Inductive Biases in Hypercomplex Deep Learning

arXiv.org Artificial Intelligence

Hypercomplex algebras have recently been gaining prominence in the field of deep learning owing to the advantages of their division algebras over real vector spaces and their superior results when dealing with multidimensional signals in real-world 3D and 4D paradigms. This paper provides a foundational framework that serves as a roadmap for understanding why hypercomplex deep learning methods are so successful and how their potential can be exploited. Such a theoretical framework is described in terms of inductive bias, i.e., a collection of assumptions, properties, and constraints that are built into training algorithms to guide their learning process toward more efficient and accurate solutions. We show that it is possible to derive specific inductive biases in the hypercomplex domains, which extend complex numbers to encompass diverse numbers and data structures. These biases prove effective in managing the distinctive properties of these domains, as well as the complex structures of multidimensional and multimodal signals. This novel perspective for hypercomplex deep learning promises to both demystify this class of methods and clarify their potential, under a unifying framework, and in this way promotes hypercomplex models as viable alternatives to traditional real-valued deep learning for multidimensional signal processing.


Generalizing Medical Image Representations via Quaternion Wavelet Networks

arXiv.org Artificial Intelligence

Neural network generalizability is becoming a broad research field due to the increasing availability of datasets from different sources and for various tasks. This issue is even wider when processing medical data, where a lack of methodological standards causes large variations being provided by different imaging centers or acquired with various devices and cofactors. To overcome these limitations, we introduce a novel, generalizable, data- and task-agnostic framework able to extract salient features from medical images. The proposed quaternion wavelet network (QUAVE) can be easily integrated with any pre-existing medical image analysis or synthesis task, and it can be involved with real, quaternion, or hypercomplex-valued models, generalizing their adoption to single-channel data. QUAVE first extracts different sub-bands through the quaternion wavelet transform, resulting in both low-frequency/approximation bands and high-frequency/fine-grained features. Then, it weighs the most representative set of sub-bands to be involved as input to any other neural model for image processing, replacing standard data samples. We conduct an extensive experimental evaluation comprising different datasets, diverse image analysis, and synthesis tasks including reconstruction, segmentation, and modality translation. We also evaluate QUAVE in combination with both real and quaternion-valued models. Results demonstrate the effectiveness and the generalizability of the proposed framework that improves network performance while being flexible to be adopted in manifold scenarios and robust to domain shifts. The full code is available at: https://github.com/ispamm/QWT.


Generative AI Meets Semantic Communication: Evolution and Revolution of Communication Tasks

arXiv.org Artificial Intelligence

While deep generative models are showing exciting abilities in computer vision and natural language processing, their adoption in communication frameworks is still far underestimated. These methods are demonstrated to evolve solutions to classic communication problems such as denoising, restoration, or compression. Nevertheless, generative models can unveil their real potential in semantic communication frameworks, in which the receiver is not asked to recover the sequence of bits used to encode the transmitted (semantic) message, but only to regenerate content that is semantically consistent with the transmitted message. Disclosing generative models capabilities in semantic communication paves the way for a paradigm shift with respect to conventional communication systems, which has great potential to reduce the amount of data traffic and offers a revolutionary versatility to novel tasks and applications that were not even conceivable a few years ago. In this paper, we present a unified perspective of deep generative models in semantic communication and we unveil their revolutionary role in future communication frameworks, enabling emerging applications and tasks. Finally, we analyze the challenges and opportunities to face to develop generative models specifically tailored for communication systems.


PHYDI: Initializing Parameterized Hypercomplex Neural Networks as Identity Functions

arXiv.org Artificial Intelligence

Neural models based on hypercomplex algebra systems are growing and prolificating for a plethora of applications, ranging from computer vision to natural language processing. Hand in hand with their adoption, parameterized hypercomplex neural networks (PHNNs) are growing in size and no techniques have been adopted so far to control their convergence at a large scale. In this paper, we study PHNNs convergence and propose parameterized hypercomplex identity initialization (PHYDI), a method to improve their convergence at different scales, leading to more robust performance when the number of layers scales up, while also reaching the same performance with fewer iterations. We show the effectiveness of this approach in different benchmarks and with common PHNNs with ResNets- and Transformer-based architecture. The code is available at https://github.com/ispamm/PHYDI.


Hypercomplex Multimodal Emotion Recognition from EEG and Peripheral Physiological Signals

arXiv.org Artificial Intelligence

Multimodal emotion recognition from physiological signals is receiving an increasing amount of attention due to the impossibility to control them at will unlike behavioral reactions, thus providing more reliable information. Existing deep learning-based methods still rely on extracted handcrafted features, not taking full advantage of the learning ability of neural networks, and often adopt a single-modality approach, while human emotions are inherently expressed in a multimodal way. In this paper, we propose a hypercomplex multimodal network equipped with a novel fusion module comprising parameterized hypercomplex multiplications. Indeed, by operating in a hypercomplex domain the operations follow algebraic rules which allow to model latent relations among learned feature dimensions for a more effective fusion step. We perform classification of valence and arousal from electroencephalogram (EEG) and peripheral physiological signals, employing the publicly available database MAHNOB-HCI surpassing a multimodal state-of-the-art network. The code of our work is freely available at https://github.com/ispamm/MHyEEG.


Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

arXiv.org Artificial Intelligence

Semantic communication is poised to play a pivotal role in shaping the landscape of future AI-driven communication systems. Its challenge of extracting semantic information from the original complex content and regenerating semantically consistent data at the receiver, possibly being robust to channel corruptions, can be addressed with deep generative models. This ICASSP special session overview paper discloses the semantic communication challenges from the machine learning perspective and unveils how deep generative models will significantly enhance semantic communication frameworks in dealing with real-world complex data, extracting and exploiting semantic information, and being robust to channel corruptions. Alongside establishing this emerging field, this paper charts novel research pathways for the next generative semantic communication frameworks.


Generative Semantic Communication: Diffusion Models Beyond Bit Recovery

arXiv.org Artificial Intelligence

Semantic communication is expected to be one of the cores of next-generation AI-based communications. One of the possibilities offered by semantic communication is the capability to regenerate, at the destination side, images or videos semantically equivalent to the transmitted ones, without necessarily recovering the transmitted sequence of bits. The current solutions still lack the ability to build complex scenes from the received partial information. Clearly, there is an unmet need to balance the effectiveness of generation methods and the complexity of the transmitted information, possibly taking into account the goal of communication. In this paper, we aim to bridge this gap by proposing a novel generative diffusion-guided framework for semantic communication that leverages the strong abilities of diffusion models in synthesizing multimedia content while preserving semantic features. We reduce bandwidth usage by sending highly-compressed semantic information only. Then, the diffusion model learns to synthesize semantic-consistent scenes through spatially-adaptive normalizations from such denoised semantic information. We prove, through an in-depth assessment of multiple scenarios, that our method outperforms existing solutions in generating high-quality images with preserved semantic information even in cases where the received content is significantly degraded. More specifically, our results show that objects, locations, and depths are still recognizable even in the presence of extremely noisy conditions of the communication channel. The code is available at https://github.com/ispamm/GESCO.


StawGAN: Structural-Aware Generative Adversarial Networks for Infrared Image Translation

arXiv.org Artificial Intelligence

This paper addresses the problem of translating night-time thermal infrared images, which are the most adopted image modalities to analyze night-time scenes, to daytime color images (NTIT2DC), which provide better perceptions of objects. We introduce a novel model that focuses on enhancing the quality of the target generation without merely colorizing it. The proposed structural aware (StawGAN) enables the translation of better-shaped and high-definition objects in the target domain. We test our model on aerial images of the DroneVeichle dataset containing RGB-IR paired images. The proposed approach produces a more accurate translation with respect to other state-of-the-art image translation models. The source code is available at https://github.com/LuigiSigillo/StawGAN