Graikos, Alexandros
Fast constrained sampling in pre-trained diffusion models
Graikos, Alexandros, Jojic, Nebojsa, Samaras, Dimitris
Diffusion models have dominated the field of large, generative image models, with the prime examples of Stable Diffusion and DALL-E 3 being widely adopted. These models have been trained to perform text-conditioned generation on vast numbers of image-caption pairs and as a byproduct, have acquired general knowledge about natural image statistics. However, when confronted with the task of constrained sampling, e.g. generating the right half of an image conditioned on the known left half, applying these models is a delicate and slow process, with previously proposed algorithms relying on expensive iterative operations that are usually orders of magnitude slower than text-based inference. This is counter-intuitive, as image-conditioned generation should rely less on the difficult-to-learn semantic knowledge that links captions and imagery, and should instead be achievable by lower-level correlations among image pixels. In practice, inverse models are trained or tuned separately for each inverse problem, e.g. by providing parts of images during training as an additional condition, to allow their application in realistic settings. However, we argue that this is not necessary and propose an algorithm for fast-constrained sampling in large pre-trained diffusion models (Stable Diffusion) that requires no expensive backpropagation operations through the model and produces results comparable even to the state-of-the-art \emph{tuned} models. Our method is based on a novel optimization perspective to sampling under constraints and employs a numerical approximation to the expensive gradients, previously computed using backpropagation, incurring significant speed-ups.
PathLDM: Text conditioned Latent Diffusion Model for Histopathology
Yellapragada, Srikar, Graikos, Alexandros, Prasanna, Prateek, Kurc, Tahsin, Saltz, Joel, Samaras, Dimitris
To achieve high-quality results, diffusion models must be trained on large datasets. This can be notably prohibitive for models in specialized domains, such as computational pathology. Conditioning on labeled data is known to help in data-efficient model training. Therefore, histopathology reports, which are rich in valuable clinical information, are an ideal choice as guidance for a histopathology generative model. In this paper, we introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images. Leveraging the rich contextual information provided by pathology text reports, our approach fuses image and textual data to enhance the generation process. By utilizing GPT's capabilities to distill and summarize complex text reports, we establish an effective conditioning mechanism. Through strategic conditioning and necessary architectural enhancements, we achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
GFlowNet-EM for learning compositional latent variable models
Hu, Edward J., Malkin, Nikolay, Jain, Moksh, Everett, Katie, Graikos, Alexandros, Bengio, Yoshua
Latent variable models (LVMs) with discrete compositional latents are an important but challenging setting due to a combinatorially large number of possible configurations of the latents. A key tradeoff in modeling the posteriors over latents is between expressivity and tractable optimization. For algorithms based on expectation-maximization (EM), the E-step is often intractable without restrictive approximations to the posterior. We propose the use of GFlowNets, algorithms for sampling from an unnormalized density by learning a stochastic policy for sequential construction of samples, for this intractable E-step. By training GFlowNets to sample from the posterior over latents, we take advantage of their strengths as amortized variational inference algorithms for complex distributions over discrete structures. Our approach, GFlowNet-EM, enables the training of expressive LVMs with discrete compositional latents, as shown by experiments on non-context-free grammar induction and on images using discrete variational autoencoders (VAEs) without conditional independence enforced in the encoder.
Diffusion models as plug-and-play priors
Graikos, Alexandros, Malkin, Nikolay, Jojic, Nebojsa, Samaras, Dimitris
We consider the problem of inferring high-dimensional data $\mathbf{x}$ in a model that consists of a prior $p(\mathbf{x})$ and an auxiliary differentiable constraint $c(\mathbf{x},\mathbf{y})$ on $x$ given some additional information $\mathbf{y}$. In this paper, the prior is an independently trained denoising diffusion generative model. The auxiliary constraint is expected to have a differentiable form, but can come from diverse sources. The possibility of such inference turns diffusion models into plug-and-play modules, thereby allowing a range of potential applications in adapting models to new domains and tasks, such as conditional generation or image segmentation. The structure of diffusion models allows us to perform approximate inference by iterating differentiation through the fixed denoising network enriched with different amounts of noise at each step. Considering many noised versions of $\mathbf{x}$ in evaluation of its fitness is a novel search mechanism that may lead to new algorithms for solving combinatorial optimization problems.
Resolving label uncertainty with implicit posterior models
Rolf, Esther, Malkin, Nikolay, Graikos, Alexandros, Jojic, Ana, Robinson, Caleb, Jojic, Nebojsa
We propose a method for jointly inferring labels across a collection of data samples, where each sample consists of an observation and a prior belief about the label. By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs. This formulation unifies various machine learning settings; the weak beliefs can come in the form of noisy or incomplete labels, likelihoods given by a different prediction mechanism on auxiliary input, or common-sense priors reflecting knowledge about the structure of the problem at hand. We demonstrate the proposed algorithms on diverse problems: classification with negative training examples, learning from rankings, weakly and self-supervised aerial imagery segmentation, co-segmentation of video frames, and coarsely supervised text classification.