Gong, Qian
Machine Learning Techniques for Data Reduction of Climate Applications
Li, Xiao, Gong, Qian, Lee, Jaemoon, Klasky, Scott, Rangarajan, Anand, Ranka, Sanjay
Scientists conduct large-scale simulations to compute derived quantities-of-interest (QoI) from primary data. Often, QoI are linked to specific features, regions, or time intervals, such that data can be adaptively reduced without compromising the integrity of QoI. For many spatiotemporal applications, these QoI are binary in nature and represent presence or absence of a physical phenomenon. We present a pipelined compression approach that first uses neural-network-based techniques to derive regions where QoI are highly likely to be present. Then, we employ a Guaranteed Autoencoder (GAE) to compress data with differential error bounds. GAE uses QoI information to apply low-error compression to only these regions. This results in overall high compression ratios while still achieving downstream goals of simulation or data collections. Experimental results are presented for climate data generated from the E3SM Simulation model for downstream quantities such as tropical cyclone and atmospheric river detection and tracking. These results show that our approach is superior to comparable methods in the literature.
Machine Learning Techniques for Data Reduction of CFD Applications
Lee, Jaemoon, Jung, Ki Sung, Gong, Qian, Li, Xiao, Klasky, Scott, Chen, Jacqueline, Rangarajan, Anand, Ranka, Sanjay
We present an approach called guaranteed block autoencoder that leverages Tensor Correlations (GBATC) for reducing the spatiotemporal data generated by computational fluid dynamics (CFD) and other scientific applications. It uses a multidimensional block of tensors (spanning in space and time) for both input and output, capturing the spatiotemporal and interspecies relationship within a tensor. The tensor consists of species that represent different elements in a CFD simulation. To guarantee the error bound of the reconstructed data, principal component analysis (PCA) is applied to the residual between the original and reconstructed data. This yields a basis matrix, which is then used to project the residual of each instance. The resulting coefficients are retained to enable accurate reconstruction. Experimental results demonstrate that our approach can deliver two orders of magnitude in reduction while still keeping the errors of primary data under scientifically acceptable bounds. Compared to reduction-based approaches based on SZ, our method achieves a substantially higher compression ratio for a given error bound or a better error for a given compression ratio.
Scalable Hybrid Learning Techniques for Scientific Data Compression
Banerjee, Tania, Choi, Jong, Lee, Jaemoon, Gong, Qian, Chen, Jieyang, Klasky, Scott, Rangarajan, Anand, Ranka, Sanjay
Data compression is becoming critical for storing scientific data because many scientific applications need to store large amounts of data and post process this data for scientific discovery. Unlike image and video compression algorithms that limit errors to primary data, scientists require compression techniques that accurately preserve derived quantities of interest (QoIs). This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression that addresses this requirement. Our hybrid compression technique combines machine learning techniques and standard compression methods. Specifically, we combine an autoencoder, an error-bounded lossy compressor to provide guarantees on raw data error, and a constraint satisfaction post-processing step to preserve the QoIs within a minimal error (generally less than floating point error). The effectiveness of the data compression pipeline is demonstrated by compressing nuclear fusion simulation data generated by a large-scale fusion code, XGC, which produces hundreds of terabytes of data in a single day. Our approach works within the ADIOS framework and results in compression by a factor of more than 150 while requiring only a few percent of the computational resources necessary for generating the data, making the overall approach highly effective for practical scenarios.