Goto

Collaborating Authors

 Goldenberg, Anna


Measurement Scheduling for ICU Patients with Offline Reinforcement Learning

arXiv.org Artificial Intelligence

Scheduling laboratory tests for ICU patients presents a significant challenge. Studies show that 20-40% of lab tests ordered in the ICU are redundant and could be eliminated without compromising patient safety. Prior work has leveraged offline reinforcement learning (Offline-RL) to find optimal policies for ordering lab tests based on patient information. However, new ICU patient datasets have since been released, and various advancements have been made in Offline-RL methods. In this study, we first introduce a preprocessing pipeline for the newly-released MIMIC-IV dataset geared toward time-series tasks. We then explore the efficacy of state-of-the-art Offline-RL methods in identifying better policies for ICU patient lab test scheduling. Besides assessing methodological performance, we also discuss the overall suitability and practicality of using Offline-RL frameworks for scheduling laboratory tests in ICU settings.


Learning from Time Series under Temporal Label Noise

arXiv.org Artificial Intelligence

Many sequential classification tasks are affected by label noise that varies over time. Such noise can cause label quality to improve, worsen, or periodically change over time. We first propose and formalize temporal label noise, an unstudied problem for sequential classification of time series. In this setting, multiple labels are recorded in sequence while being corrupted by a time-dependent noise function. We first demonstrate the importance of modelling the temporal nature of the label noise function and how existing methods will consistently underperform. We then propose methods that can train noise-tolerant classifiers by estimating the temporal label noise function directly from data. We show that our methods lead to state-of-the-art performance in the presence of diverse temporal label noise functions using real and synthetic data.


Integrate Any Omics: Towards genome-wide data integration for patient stratification

arXiv.org Artificial Intelligence

High-throughput omics profiling advancements have greatly enhanced cancer patient stratification. However, incomplete data in multi-omics integration presents a significant challenge, as traditional methods like sample exclusion or imputation often compromise biological diversity and dependencies. Furthermore, the critical task of accurately classifying new patients with partial omics data into existing subtypes is commonly overlooked. To address these issues, we introduce IntegrAO (Integrate Any Omics), an unsupervised framework for integrating incomplete multi-omics data and classifying new samples. IntegrAO first combines partially overlapping patient graphs from diverse omics sources and utilizes graph neural networks to produce unified patient embeddings. Our systematic evaluation across five cancer cohorts involving six omics modalities demonstrates IntegrAO's robustness to missing data and its accuracy in classifying new samples with partial profiles. An acute myeloid leukemia case study further validates its capability to uncover biological and clinical heterogeneity in incomplete datasets. IntegrAO's ability to handle heterogeneous and incomplete data makes it an essential tool for precision oncology, offering a holistic approach to patient characterization.


CongFu: Conditional Graph Fusion for Drug Synergy Prediction

arXiv.org Artificial Intelligence

Drug synergy, characterized by the amplified combined effect of multiple drugs, is critically important for optimizing therapeutic outcomes. Limited data on drug synergy, arising from the vast number of possible drug combinations and testing costs, motivate the need for predictive methods. In this work, we introduce CongFu, a novel Conditional Graph Fusion Layer, designed to predict drug synergy. CongFu employs an attention mechanism and a bottleneck to extract local graph contexts and conditionally fuse graph data within a global context. Its modular architecture enables flexible replacement of layer modules, including readouts and graph encoders, facilitating customization for diverse applications. To evaluate the performance of CongFu, we conduct comprehensive experiments on four datasets, encompassing three distinct setups for drug synergy prediction. CongFu achieves state-of-the-art results on 11 out of 12 benchmark datasets, demonstrating its ability to capture intricate patterns of drug synergy. Through ablation studies, we validate the significance of individual layer components, affirming their contributions to overall predictive performance. Finally, we propose an explainability strategy for elucidating the effect of drugs on genes. By addressing the challenge of predicting drug synergy in untested drug pairs and utilizing our proposed explainability approach, CongFu opens new avenues for optimizing drug combinations and advancing personalized medicine.


Dynamic Interpretable Change Point Detection

arXiv.org Artificial Intelligence

Identifying change points (CPs) in a time series is crucial to guide better decision making across various fields like finance and healthcare and facilitating timely responses to potential risks or opportunities. Existing Change Point Detection (CPD) methods have a limitation in tracking changes in the joint distribution of multidimensional features. In addition, they fail to generalize effectively within the same time series as different types of CPs may require different detection methods. As the volume of multidimensional time series continues to grow, capturing various types of complex CPs such as changes in the correlation structure of the time-series features has become essential. To overcome the limitations of existing methods, we propose TiVaCPD, an approach that uses a Time-Varying Graphical Lasso (TVGL) to identify changes in correlation patterns between multidimensional features over time, and combines that with an aggregate Kernel Maximum Mean Discrepancy (MMD) test to identify changes in the underlying statistical distributions of dynamic time windows with varying length. The MMD and TVGL scores are combined using a novel ensemble method based on similarity measures leveraging the power of both statistical tests. We evaluate the performance of TiVaCPD in identifying and characterizing various types of CPs and show that our method outperforms current state-of-the-art methods in real-world CPD datasets. We further demonstrate that TiVaCPD scores characterize the type of CPs and facilitate interpretation of change dynamics, offering insights into real-life applications.


Maintaining Stability and Plasticity for Predictive Churn Reduction

arXiv.org Artificial Intelligence

Deployed machine learning models should be updated to take advantage of a larger sample size to improve performance, as more data is gathered over time. Unfortunately, even when model updates improve aggregate metrics such as accuracy, they can lead to errors on samples that were correctly predicted by the previous model causing per-sample regression in performance known as predictive churn. Such prediction flips erode user trust thereby reducing the effectiveness of the human-AI team as a whole. We propose a solution called Accumulated Model Combination (AMC) based keeping the previous and current model version, and generating a meta-output using the prediction of the two models. AMC is a general technique and we propose several instances of it, each having their own advantages depending on the model and data properties. AMC requires minimal additional computation and changes to training procedures. We motivate the need for AMC by showing the difficulty of making a single model consistent with its own predictions throughout training thereby revealing an implicit stability-plasticity tradeoff when training a single model. We demonstrate the effectiveness of AMC on a variety of modalities including computer vision, text, and tabular datasets comparing against state-of-the-art churn reduction methods, and showing superior churn reduction ability compared to all existing methods while being more efficient than ensembles.


From Single-Visit to Multi-Visit Image-Based Models: Single-Visit Models are Enough to Predict Obstructive Hydronephrosis

arXiv.org Artificial Intelligence

Previous work has shown the potential of deep learning to predict renal obstruction using kidney ultrasound images. However, these image-based classifiers have been trained with the goal of single-visit inference in mind. We compare methods from video action recognition (i.e. convolutional pooling, LSTM, TSM) to adapt single-visit convolutional models to handle multiple visit inference. We demonstrate that incorporating images from a patient's past hospital visits provides only a small benefit for the prediction of obstructive hydronephrosis. Therefore, inclusion of prior ultrasounds is beneficial, but prediction based on the latest ultrasound is sufficient for patient risk stratification.


Towards Robust Classification Model by Counterfactual and Invariant Data Generation

arXiv.org Artificial Intelligence

Despite the success of machine learning applications in science, industry, and society in general, many approaches are known to be non-robust, often relying on spurious correlations to make predictions. Spuriousness occurs when some features correlate with labels but are not causal; relying on such features prevents models from generalizing to unseen environments where such correlations break. In this work, we focus on image classification and propose two data generation processes to reduce spuriousness. Given human annotations of the subset of the features responsible (causal) for the labels (e.g. bounding boxes), we modify this causal set to generate a surrogate image that no longer has the same label (i.e. a counterfactual image). We also alter non-causal features to generate images still recognized as the original labels, which helps to learn a model invariant to these features. In several challenging datasets, our data generations outperform state-of-the-art methods in accuracy when spurious correlations break, and increase the saliency focus on causal features providing better explanations.


Unsupervised Representation Learning for Time Series with Temporal Neighborhood Coding

arXiv.org Machine Learning

Time series are often complex and rich in information but sparsely labeled and therefore challenging to model. In this paper, we propose a self-supervised framework for learning generalizable representations for non-stationary time series. Our approach, called Temporal Neighborhood Coding (TNC), takes advantage of the local smoothness of a signal's generative process to define neighborhoods in time with stationary properties. Using a debiased contrastive objective, our framework learns time series representations by ensuring that in the encoding space, the distribution of signals from within a neighborhood is distinguishable from the distribution of non-neighboring signals. Our motivation stems from the medical field, where the ability to model the dynamic nature of time series data is especially valuable for identifying, tracking, and predicting the underlying patients' latent states in settings where labeling data is practically impossible. We compare our method to recently developed unsupervised representation learning approaches and demonstrate superior performance on clustering and classification tasks for multiple datasets. Real-world time-series data is high dimensional, complex, and has unique properties that bring about many challenges for data modeling (Yang & Wu, 2006). In addition, these signals are often sparsely labeled, making it even more challenging for supervised learning tasks. Unsupervised representation learning can extract informative low-dimensional representations from raw time series by leveraging the data's inherent structure, without the need for explicit supervision. These representations are more generalizable and robust, as they are less specialized for solving a single supervised task. Unsupervised representation learning is well studied in domains such as vision (Donahue & Simonyan, 2019; Denton et al., 2017; Radford et al., 2015) and natural language processing (Radford et al., 2017; Young et al., 2018; Mikolov et al., 2013), but has been underexplored in the literature for time series settings.


Chasing Your Long Tails: Differentially Private Prediction in Health Care Settings

arXiv.org Machine Learning

Machine learning models in health care are often deployed in settings where it is important to protect patient privacy. In such settings, methods for differentially private (DP) learning provide a general-purpose approach to learn models with privacy guarantees. Modern methods for DP learning ensure privacy through mechanisms that censor information judged as too unique. The resulting privacy-preserving models, therefore, neglect information from the tails of a data distribution, resulting in a loss of accuracy that can disproportionately affect small groups. In this paper, we study the effects of DP learning in health care. We use state-of-the-art methods for DP learning to train privacy-preserving models in clinical prediction tasks, including x-ray classification of images and mortality prediction in time series data. We use these models to perform a comprehensive empirical investigation of the tradeoffs between privacy, utility, robustness to dataset shift, and fairness. Our results highlight lesser-known limitations of methods for DP learning in health care, models that exhibit steep tradeoffs between privacy and utility, and models whose predictions are disproportionately influenced by large demographic groups in the training data. We discuss the costs and benefits of differentially private learning in health care.